Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
L. Pellett (Lockheed Aeronautical Systems Corporation), November 1989
This paper describes two signal processing techniques that have been used to overcome specific problems in a Lockheed Aeronautical Systems Corporation (LASC) indoor compact RCS measurement range. Both techniques are post processing techniques used to enhance the accuracy of RCS vs. Aspect measurements. These two techniques can speed up measurement time, increase measurement accuracy, and increase target sizes on a compact range.
This paper discusses the configuration and performance of millimeter-wave measurement systems comprised of standard Harris Shaped Compact Ranges, Hewlett Packard (HP) 8510B Network Analyzer, and Millitech frequency extenders designed for use with the network analyzer. Millimeter-wave capabilities have been integrated into the Harris automated measurement system to allow computer controlled millimeter-wave compact range characterizations. This system offers a new measurement alternative for antenna and Radar Cross Section (RCS) measurements. Measured 35 GHz data from the Harris Model 1606 compact range, and 95 GHz data from the Model 1603 compact range are included.
P.A. Henry (Motorola GEG),R.W. Taylor (McDonnell Douglas Helicopter Co.),
S. Brumley (DENMAR Inc.), November 1989
Measured component RCS results are frequently dominated by the test body and target mounting structures. This paper will present a measurement technique that will improve measurement accuracy using a less complex and expensive test body. The design of the test body and measurement geometry allows isolation in both range and cross range from the static return of the room and mounting structure. This is accomplished by first creating an ISAR image of the target and test body, gating the image in two dimensions, then transforming back into the frequency and spatial angle domains to determine the scattering levels of the target by itself. Details of this technique, covering both its advantages and limitations, will be discussed. Data will be presented to verify the approach and illustrate the level of performance attainable using this technique.
R. Harris (METRATEK, Inc.),J. Gray (METRATEK, Inc.), November 1989
This paper describes methodology for performing high resolution target radar cross section (RCS) diagnostic measurements with a new type of portable multifrequency radar. The Model 200 radar system is capable of operating at extremely short ranges, and does not require an anechoic chamber for performing highly sensitive radar cross section measurements. Measurements can be made in conventional low range resolution polar plot modes, in high-range-resolution (HRR) mode, in Inverse Synthetic Aperture (ISAR) mode, and in Synthetic Aperture (SAR) mode. The radar is described and the implications for present and future measurement technology are discussed.
In the past, most radar-cross-section imaging has been done after data has been taken. At best, this off-line processing generates images that are returned to a customer the next day.
Many projects can benefit significantly by having concurrent imaging and data acquisition. This allows for real-time cause and effect type diagnostics without rescheduling range time. As RCS range time becomes increasingly more expensive and difficult to schedule, real-time imaging provides the project engineer with a valuable tool to optimally use his range time.
A technique has been developed to render real-time radar cross section images while acquiring data. All image processing is performed to achieve a fully enhanced image. Focussing, interpolation, and windowing are all used to give a detailed image. The system uses a Hewlett Packard 8510B for data taking and Hewlett Packard computers for data acquisition and image processing.
A Bati (Pacific Missile Test Center),D. Mensa (Pacific Missile Test Center),
G. Fliss (Pacific Missile Test Center),
R. Dezellem (Pacific Missile Test Center),
R. Siefker (General Motors), November 1989
RCS instrumentation systems capable of combining wide-band and ISAR techniques to obtain two-dimensional images are widely used to perform RCS diagnostic and measurement functions. Objects involving rotating structures, such as blades of propulsion systems complicate the diagnostic task. The paper address the utilization of diagnostic RCS systems to meaningfully determine the radar signatures of objects with rotating components and presents results obtained from a generic data set, typically available from wide-band RCS instrumentation systems. The results provide valuable insight to the signature of objects with rotating components.
G. McCarter (Hewlett-Packard Company), November 1989
As in any real world measurement application, there are performance trade offs to be made between hardware and software gating in RCS measurements. Hardware gating adds significant complexity and cost to the measurement system and, incorrectly applied, can result in degraded measurement performance. A measurement system based on software gating is the simplest and most cost effective to implement but may have performance limitations on some types of ranges. The objective of this papers to provide useful guidelines to use in choosing between an HP 8510B RCS measurement system based on software gating, hardware gating, or a combination of the two approaches.
This paper considers hardware and software issues associated with accurate RCS, antenna, and near field antenna measurements. In particular we examine methods for making accurate measurements at high speed using existing network analysis equipment, such as the HP8510B. Techniques which allow for fundamental mixing are examined from the viewpoint of enhanced dynamic range and speed. Harmonic mixing techniques are also discussed and limitations related to IF bandwidth and harmonic locking are presented. The realtime requirements of software systems for these applications are presented and operating system considerations are analyzed. Interface attributes are examined with a view toward use with multi-tasking operating systems and the real-time requirements of high speed measurement systems.
O.M. Caldwell (Scientific-Atlanta, Inc.), November 1989
Precise and complete measurements of advanced electromagnetic systems demand dramatically higher data acquisition speeds than those commonly attainable. Specific challenges include requirements for wideband measurements with arbitrarily spaced frequency steps. These types of measurements are often encountered in characterizing EW/ECM systems, radars, communications systems, and in performing antenna and RCS measurements.
The Scientific-Atlanta Model 1795 Microwave Receiver offers capabilities directly applicable to solving measurement problems posed by highly frequency agile systems. These problems include: 1) timing constraints 2) data throughput 3) RF interfacing 4) maintaining high accuracy A technique is discussed which shows the application of the Model 1795 Microwave Receiver in its high frequency agility mode of operation. Measurement examples are presented showing the advantages gained compared to previous methods and instrumentation configurations.
H.C.M. Yuan (Hughes Aircraft Company), November 1989
A major concern for any user of a compact range for RCS or antenna measurements is the quality of the wavefront over the quiet zone and background chamber levels at the desired frequency band. Amplitude and phase ripple in the quiet zone is an indicator of how well the electromagnetic energy is collimated coherently by the reflector system. The amount of ripple depends on the reflector system, reflector edge treatment to reduce diffraction, frequency band and chamber interactions. Edge treatment techniques such as serrations on the reflector edge helps to reduce diffraction of unwanted energy into the quiet zone. Constructive and destructive interference of diffracted of energy in the quiet zone causes the amplitude and phase ripple. The goal is to reduce the ripple to a minimal amount.
Previous studies by the author have compared two-way and angle transform field scanning techniques. The results strongly indicate that both techniques provide good agreement. The two-way method has the disadvantage of strong dependence on the scanning target directivity. A directive target will tend to disregard diffraction from the reflector edges because of its low sidelobes. Its advantage is that there is no need for external mixing equipment for the microwave receiver. The angle transform is simple in configuration consisting of a narrow flat plane or bar mounted on an azimuth positioner and rotated. The disadvantage is a summing of energy in the zero-doppler cell yielding an artifact ripple. Both of these methods also depend upon software gating algorithms including gate shape and width which directly influence the amplitude and phase ripple.
The aim of this study is to compare the two-way, one-way field scanning techniques and the angle transform method. Can comparisons be made between the methods? Can a fairly good agreement be made? Are multi-path considerations addressed in one-way scan techniques? Hughes Aircraft will use one of the compact ranges at the Antenna Test Facility of Motorola GEG at Scottsdale, Arizona with the March Microwave (Vokurka) dual reflector system. Field scans will be measured using both the two-way and one-way techniques. The two-way method will use the 8 cm diameter disk as the scanning target, mounted on a horizontally traversed scanner. The one-way method will use a standard gain horn mounted on the same scanner. The angle transform method will use an 8 ft narrow flat plate rotated in the quiet zone. The field scans will be measured and studied at 10 GHz.
C.A. Balanis (Arizona State University),C.R. Birtcher (Arizona State University),
K.W. Lam (Eindhoven University),
V.J. Vokurka (Eindhoven University), November 1989
Accurate calibration methods are of essential importance in RCS measurements. First, absolute RCS determination (in dBsm) can be carried out accurately provided a correct algorithm is used describing the RCS dependence of some reference target at all frequencies. Unfortunately, this technique gives error-free calibrated data at one position only.
In this paper a new technique for qualifying of RCS ranges will be described. A reference target with well-known RCS response is used during the calibration measurement. The amplitude and phase distributions are then computed for all required positions within the test zone. Finally, an error estimate in measured RCS responses can be made by using two other application programs.
The Vulnerability Assessment Laboratory (VAL) anechoic chamber at White Sands Missile Range, New Mexico was reconfigured and refurbished during the last part of 1988. This paper will be a facility description of the state-of-the-art Special Electromagnetic Interference (SEMI) investigation facility. Electromagnetic susceptibility and vulnerability investigations of US and, in some cases, foreign weapon systems are conducted by the EW experts in the Technology and Advanced Concepts (TAC) Division of VAL. EMI investigations have recently been completed on both the UH-50A BLACKHAWK and AH-64A Apache helicopters in the chamber.
The paper will cover the facility's three anechoic chambers, shielded RF instrumentation bay, computer facilities for EM coupling analyses, and the myriad of antenna, antenna pattern measurement, amplifier, electronic, and support instrumentation equipment for the chambers. A radar cross section measurement and an off-line RCS data processing station are also included in the facility.
T-H. Lee (The Ohio State University ElectroScience Laboratory),W.D. Burnside (The Ohio State University ElectroScience Laboratory), November 1989
This paper evaluates the RCS errors associated with measuring a large flat plate which is illuminated by a compact range reflector with significant edge diffraction stray signals. This is done by evaluating the true fields incident on the plate and then using a physical optics technique to predict the backscattered fields. Results are compared with and without the edge diffracted fields present. A simple analytic expression is developed which can approximate the size of this potential error.
L.M. Verhoeven (March Microwave Systems B.V.),V.J. Vokurka (March Microwave Systems B.V.), November 1989
Image gating or editing is often used to determine the effect of an isolated scatterer on the RCS in the frequency and aspect-angle domain.
In this paper, theoretical computations indicating limits in the image-gating procedure will be presented. The process provides the image-gating capability in combination with phase-corrected (focused) imaging.
Targets consisting of two-point scatterers with well-known RCS response have been used. One of the scatterers is gated out and the resulting RCS versus frequency or aspect angle is determined and compared with its theoretical value. Limits in terms of minimum bandwidth or minimum distance in resolution-cell sizes are defined. The influence of several gate shapes and windows have also been examined. Experimental investigation has been carried out in order to verify the theory.
E. Walton (The Ohio State University ElectroScience Laboratory),L. Beard (The Ohio State University ElectroScience Laboratory), November 1989
Under many circumstances it is necessary to experimentally estimate the radar cross section of targets in a cluttered environment. A significant reduction in the clutter can be obtained when cross range filtering can be done. In this experimental RC measurement concept, scattering measurements are performed using a moving radar antenna. Thus scattering as a function of target plus clutter versus aspect angle in the near field can be measured. Next, a back projection algorithm can be used to estimate the scattering as a function of position in the neighborhood of the target. The known range to which the signal is to be focussed is used to project back to the target area. An estimate of the RCS at points along a line in the plane of the target is computed. The clutter responses can then be removed from the data, and the remaining target-only values projected forward again (possibly to the far field) to estimate the RCS of the target alone.
M. Boumans (March Microwave Inc.),A.M. Boeck (Dornier Luftfahrt GmbH),
C.A. Balanis (Arizona State University),
Craig Birtcher (Arizona State University), November 1989
An RCS measurement error model, calibration procedure and correction algorithm are discussed. A distinction between frequency response reflections and range-target reflections is made. Special emphasis is placed on the selection of the gate span with time gating used with the calibration and test target measurements. Mathematical simulations and actual measurements illustrate the discussion. It is concluded that frequency response related reflections must and range-target reflections must not be included in the gate for the frequency response calibration measurement.
H.F. Schluper (March Microwave Systems B.V.), November 1989
Serrations are used on Compact Antenna Test Range reflectors to reduce the effects of edge diffraction. It has been found that the traditional triangular shape for these serrations is not optimal and that more continuous shapes should perform better. To verify this, RCS measurements were performed on test targets consisting of strip reflectors terminated by end sections of various shapes. The RCS vs. angle data were corrected for the field irregularities caused by the measurement range and then converted to the induced current distributions on the targets, from which the fields in front of the targets were calculated using Physical Optics. These fields are equivalent to the test-zone fields of an actual Compact Range. The results are compared with theoretical data. The agreement is good.
E. Dudok (Messerschmitt-Bolkow-Blohm GmbH),H-J. Steiner (Messerschmitt-Bolkow-Blohm GmbH),
J. Habersack (Messerschmitt-Bolkow-Blohm GmbH),
T. Fritzel (Messerschmitt-Bolkow-Blohm GmbH), November 1989
To fulfill the future demand of highly accurate antenna-, RCS- and payload testing, MBB built a new antenna test centre at Ottobrunn (Ref. 1). This paper describes the development and qualification of the large, dual reflector Compact Range (CR) which has a plane wave zone of 5.5 x 5.0 x 6.0 m (w x h x d). It starts with the results of a detailed electrical trade-off study between different CR-concepts, followed by some mechanical/thermal construction aspects of the large, highly accurate reflectors.
Finally, some qualification results are shown, covering the frequency range from 3.5 GHz up to 200 GHz (lowest frequency of operation approx. 2 GHz). The achieved plane wave performance (amplitude ripple ±5o, phase ripple ±5o, cross-polarization isolation > 40 dB) verifies the high quality overall system design.
Z. Al-Hekail (The Ohio State University ElectroScience Laboratory),I.J. Gupta (The Ohio State University ElectroScience Laboratory),
W.D. Burnside (The Ohio State University ElectroScience Laboratory), November 1989
Dielectric straps can support very heavy targets and have a low radar cross section (RCS), especially at low frequencies (below 8 GHz). In this paper, the scattered fields of dielectric straps surrounding a perfectly conducting structure are presented, and the computed results are compared with experimental data. Empirical formulas for the strap scattered fields are also given. These formulas are good for general convex structures and are expected to give a reasonable estimate of the true RCS of the dielectric straps when used as a target support structure.
D.G. Watters (SRI International),R.J. Vidmar (SRI International), November 1989
A stressed-skin inflatable target support provides an improvement over a foam column for radar cross section (RCS) measurements in an anechoic chamber. Theoretical analysis indicates that backscatter from the support is minimized because its mass is reduced below that of a foam column and is distributed to favor incoherent scattering. Compared with a foam column, a pressurized thin shell has superior mechanical stability under both axial and transverse loads. Experimental observations using Mylar -- a low dielectric constant, high tensile strength film -- confirm these results. Spurious reflections from rotational machinery located below an inflatable column are reduced by a layer of absorber within the base of the inflatable support.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.