AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

RCS

Correction/calibration of wide-band RCS radar data containing I/Q error
D.E. Pasquan (Texas Instruments Incorporated), November 1990

In-phase and quadrature (I/Q) aberrations in radar receiver data create problems in radars used for radar cross section (RCS) measurements. I/Q errors cause incorrect representations of the target under test. A method for correcting I/Q error and calibrating the measured amplitude to a scattering standard provides a means of obtaining a more accurate representation of the target under test. The RCS measurement instrumentation addressed here uses a wide band receiver with a single quadrature mixer for conversion of radio frequency (RF) to base band (also referred to as video) frequency. In the one-step down conversion, distortions in the I/Q constellation occur, causing I/Q errors. This method quantifies the extent of the I/Q problem by estimating the actual I/Q error from a series of calibration measurements. An algorithm is presented which quantifies parameters of the I/Q distortion, then uses the distortion parameters to remove the I/Q aberrations from the target measurement.

Short term stability performance of pulsed instrumentation radars using TWTAS
J. Allison (Hughes Aircraft Company),J. Paul (Hughes Aircraft Company), R. Santos (Hughes Aircraft Company), November 1990

Pulse-to-pulse amplitude and phase noise can affect the overall measurement accuracy of RCS instrumentation radars. Depending upon the measurement requirements, such noise can limit the overall performance whenever pulse-to-pulse repeatability is required in the signal processing. Radar systems using pulsed TWTAs are subject to high noise due to limitations in the performance of the TWTA modulators and power supplies. A characterization of this additive noise is important to understand the limitations in system performance. Measurements have been made on kilowatt power TWTAs at L and X band as well as 20 watt pulsed TWTAs at S, C, and X/Ku band at various duty cycles and PRFs.

GO taper and cross-polarization error corrections for RCS measurements in compact range
J-R. Gau (The Ohio State University),T-H. Lee (The Ohio State University), W.D. Burnside (The Ohio State University), November 1990

Compact range systems have been widely used for high quality RCS measurements. However the taper and cross-polarization effects can lead to significant measurement errors especially as the target approaches the border of the target zone. The taper error is mainly caused by the feed’s finite beamwidth, and the cross-polarization error by the feed’s cross-polarized radiation and the offset configuration of the reflector. A method to correct these errors is presented. In order to perform taper and cross-polarization error corrections, one has to be able to predict the target zone fields and determine the locations and complex strengths of the various scattering centers associated with the target. The correction can then be done by compensating for the taper and cross-polarization effects for each localized scattering center. Several measurements have been taken, corrected and then compared with the theoretically expected results to validate this technique.

Amplitude taper removing in RCS measurement
D-C. Chang (Chung Shan Institute of Science and Technology),I.J. Fu (Chung Shan Institute of Science and Technology), M.R. Ho (Chung Shan Institute of Science and Technology), R.C. Liou (Chung Shan Institute of Science and Technology), S.Y. Wang (Chung Shan Institute of Science and Technology), November 1990

Amplitude taper removing by software implementation has been made beyond the quiet zone region of a compact range reflector where the phase variation is still small. To remove amplitude taper effect in RCS measurement, actual amplitude taper of the range s first obtained by theoretically calculating the field distribution from the given range geometry and confirming with field measurement result. The processed target RCS contour is later implemented with the actual amplitude distribution around the region where the target is located. It is found that with the software implementation of amplitude taper removing the effective quiet zone of the compact range has been able to extend up to the size of the reflector diameter.

Global and local features of wideband RCS signatures
A. Bati (Pacific Missile Test Center),D. Mensa (Pacific Missile Test Center), R. Dezellem (Pacific Missile Test Center), November 1990

The utility of wideband RCS data for characterizing scattering mechanisms of complex objects has been established by wide-spread applications. The fundamental data from which the final products are derived consist of calibrated scattered fields measured coherently as a function of frequency and aspect angle. By processing these data, one-dimensional range or cross-range reflectivity profiles can be derived; by further processing, two-dimensional images can be derived. Modern RCS instrumentation systems capable of rapidly measuring and processing wideband data provide more object information than is conveyed by the RCS pattern, which has been the traditional descriptor of scattering behavior. The procedures of one- or two-dimensional imaging inherently involve integration processes, constituting many-to-one mappings in which data from a large set are collapsed to produce an individual pixel of the image. For example, a particular pixel of a range response is derived from the total object response “integrated” over a band of frequencies; similarly, a pixel of a two-dimensional image is derived from the object response “integrated” over frequency and angle. The exposure of a local feature of the object signature, obtained by collapsing the fundamental data, comes at the cost of obscuring the global descriptor. This paper explores techniques for presenting large amounts of information on single displays which retain both global and local features of the scattering process. These tools provide to the RCS analyst options for extracting and interpreting significant information from the measured data without arbitrary degrees of integration which can mask essential details represented in the data. The display methods utilize color coding to increase the amount of information conveyed by a single plot. Because color reproduction is not available for the proceedings, the paper is to be distributed at the conference.

ICCE: Interactive coherent clean editing
J.C. Davis (Information Systems and Research, Inc.),L.A. Perna (Information Systems and Research, Inc.), November 1990

We discuss recent advances in signal-to-noise and signal-to-clutter enhancement technology applied to RCS measurements, with an emphasis on post-processing techniques. Then, we outline a technique we refer to as Interactive Coherent CLEAN Editing (ICCE). ICCE permits the analyst to segregate scattering features of the model under test into various groups. Clutter sources, such as the target support pylon, can be subtracted with potentially less error and more flexibility than other techniques. Limitations and the current status of ICCE are discussed.

High speed control of instrumentation for antenna and RCS measurements
R.J. Juels (Comstron Division of Aeroflex Laboratories),Y. Lissack (Comstron Division of Aeroflex Laboratories), November 1990

Today’s measurement systems are placing ever increasing demands upon the computer systems which control instrumentation and collect data. This paper investigates high speed control of instrumentation for RCS and antenna measurements. Off-loading of I/O from control and data acquisition computers is examined with a view toward improving measurement throughput and simplifying I/O control tasks. These methods are particularly important for multi-tasking systems and networked resources where high speed real time control is burdensome. Attributes of I/O enhancement architectures are examined and tradeoffs between performance and flexibility are reviewed.

Gregorian compact range analysis and design
J. Molina (IRSA),J.A. Rodrigo (IRSA), J.L. Besada (Polytechnic University of Madrid), M. Calvo (Polytechnic University of Madrid), November 1990

This paper deals with design and evaluation of Compact Range Antenna and RCS measurement systems. Reflector subsystem and feeders design as well as quiet zone evaluation and system performance qualification are considered. Acquisition, process and presentation software to control the whole system has been developed and successfully implemented. Two systems have been designed and are now at implementation stage. A Gregorian concept Compact Range is now been constructed at RYMSA (Spain). This facility has been fully designed by IRSA and will be operative by the end of 1990. Compact Payload Test Range (CPTR) at ESTEC (ESA) is now been tested. System Instrumentation and PAMAS (Payload and Antenna Measurement and Analysis Software) have been developed.

Wideband polarimetric determination of antenna radiation and scattering characteristics by RCS-measurements
E. Heidrich (University Karlsruhe),W. Wiesbeck (University Karlsruhe), November 1990

A novel and very powerful measurement technique is presented which allows the determination of antenna radiation and scattering by radar-cross-section (RCS-_ measurements. The antenna under test is treated as a loaded scatterer using a polarization dependent network model that allows a complete antenna description in terms of scattered, radiated and absorbed waves. A load variation principle is used to determine the network model parameters and all commonly used antenna parameters like gain, antenna polarization, axial ratio, polarization decoupling, input impedance and also structural scattering can be derived from the backscatter measurement without using any additional standard antenna. With the antenna network description it is furthermore possible to examine the antenna behavior for arbitrary excitation or loading on their waveguide or radiation port.

An Overview of parameters determining productivity and sensitivity in RCS measurement facilities
E. Hart (Scientific-Atlanta, Inc.),W.G. Luehrs (Scientific-Atlanta, Inc.), November 1990

A major objective in the design of an RCS measurement facility is to obtain the greatest possible productivity (overall measurement efficiency) while maintaining the accuracy and sensitivity necessary for low radar cross section targets. This paper will present parameters affecting the total throughput rates of an indoor facility including instrumentation, target handling, and band changes-one of the most time consuming activities in the measurement process. Sensitivity and accuracy issues to be discussed include radar capabilities, feeds and feed clustering, compact range, background levels, and diffraction control.

Design of an inflatable support for outdoor RCS measurements: mechanical and environmental considerations
D.G. Watters (SRI International),R.J. Vidmar (SRI International), November 1990

Mechanical and environmental considerations for outdoor operation of an inflatable column are discussed in the context of a 30-ft-high column. The column is designed to support a 900-lb load in a 30-knot wind. Column RCS is less than -40 dBsm below 1 GHz for both horizontally and vertically polarized illumination. Designs using Mylar and Teflon-coated Kevlar as skin materials are compared. The primary concerns are wind loading, pressure regulation, and solar heating. Wind effects include static loading, gusting, and vortex shedding. In addition, wind-driven particulates, such as sand or stones propelled by passing vehicles can puncture the column. A pneumatic control system maintains a constant internal support pressure in the presence of leaks or pressure fluctuations due to changes in solar illumination.

Advanced control systems for target support in compact ranges
R.M. Gottshall (Boeing Advanced Systems),A. Trabelsi (ORBIT Advanced Technologies), November 1990

This system provides improved techniques for controlling positioning axes, and secure transmission of position data from remotely located control systems. Advancements in controls technology have allows more complex configurations for use in the manipulation of RCS targets in indoor ranges. This paper will discuss a unique system design that provides automated testing and positioning of RCS test bodies. The current system uses seven axes of motion, and allows for simultaneous motion as well as synchronous motion of any axis pairs in the system. These axes include Target azimuth and elevation, Pylon azimuth and elevation, Upper and Lower turntable azimuth, and carriage linear drives. In addition, the concepts of secure data transmission through the use of specialized fiber optics are addressed. Finally, a complex set of safety interlocks and man and machine protection is discussed. The entire system is currently implemented and running in the Boeing range.

Hughes Aircraft Company's new RCS measurement facility
A.R. Lamb (Hughes Aircraft Company),R.G. Immell (Denmar, Inc.), November 1990

The Hughes Aircraft Company recently completed the design, development, and construction of a new engineering facility that is dedicated to providing state-of-the-art Radar Cross Section Measurements. The facility is located at the Radar Systems Group in El Segundo, California and consists of two secure, tempest shielded anechoic chambers, a secure high bay work area, two large secure storage vaults, a secure tempest computer facility, a secure conference room, and the normal building support facilities. This RCS measurement test facility is the result of Hughes committing the time and money to study the problems which influence user friendly RCS measurement facility design decisions. Both anechoic chambers contain compact ranges and RCS measurement data collection systems. A description of the facility layout, instrumentation, target handling capability, and target access is presented.

A Compact test range for demonstrating antenna and RCS measurement performance
J. Swanstrom (Hewlett-Packard), November 1990

There are two main parts to an antenna or RCS measurement system: the measurement instrumentation, and the measurement environment or “range”. Performance of the measurement system is dependent upon both the instrumentation and the range. Developing a successful measurement system requires understanding both parts of the system. This paper describes a Compact Test Range that has been designed and built for the purpose of demonstrating antenna and RCS measurement performance of a complete measurement system. Additionally the Compact Test Range will serve as a development platform for future antenna and RCS products and systems. The purpose of the chamber, design objectives, design techniques, expected and measured performance are all discussed.

Lockheed's Advanced Development Company's electromagnetic measurement facility
R. Taron,L. Pellett, November 1990

Lockheed’s Advanced Development Company (LADC), located in Burbank, California, has recently completed construction of a state-of-the-art indoor Antenna/RCS test facility. This facility is housed in a dedicated 40,000 square foot building which is a maximum of 80 feet high. This building contains three anechoic chambers providing Antenna/RCS measurement capability from 100 Mhz to 100 Ghz. The largest chamber, with dimensions of 64 feet by 64 feet by 97 feet is configured as a compact range. This chamber utilizes the largest collimating reflector that Scientific-Atlanta has ever constructed. Primary test usage of this chamber is for RCS measurements in the frequency band of 700 Mhz to 100 Ghz. The second chamber is configured as a tapered horn test range. Its dimensions are 155 feet long with a 50 foot by 50 foot by 55 foot volume measurement zone. This chamber is utilized for RCS tests in the VHF, UHF, and L frequency bands and antenna tests from 100 MHz and up. The third chamber, with dimensions 14 foot by 14 foot by 56 foot, is a far field chamber designed to check out and evaluate small items up to 100 GHz. The entire facility has been designed to maximize efficiency, minimize the cost of operation, and produce outstanding quality data from Antenna/RCS measurements. A number of innovative techniques in model handling, model access, and model security were incorporated into the facility design. These features, as well as utilization of unique Lockheed designed and built pylons, allowed achievement of all these goals.

The New French anechoic chamber for wide band RCS measurements
J.L. Bonnefoy (CESTA),J. Garat (CESTA), J. Saget (Dassault Electronique), J.P. Behaegal (Dassault Electronique), J.P. Prulhiere (CESTA), November 1990

Among its different facilities, C.E.A. has an indoor range for radar cross section (RCS) measurements over a wide frequency range from 0,1 GHz to 18 GHz. The dimensions of this anechoic chamber, 45m x 13m x 12m and a quiet zone diameter of about 3m, make it one of the largest in Europe. It consists in a parabolic reflector for frequencies higher than 0,8 GHz and a system using inverse synthetic aperture radar (ISAR) techniques for lower frequencies associated with a short pulse coherent radar instrumentation equipment. In addition to performant instrumentation and illumination systems, the main features of this installation dedicated to measure stealth objects, are low residual clutter, discrete target supports, and powerful processing software. The technical solutions adopted are described.

A High performance RCS measurement system in CSIST
D-C. Chang (Chung Shan Institute of Science and Technology),I.J. Fu (Chung Shan Institute of Science and Technology), R.C. Liou (Chung Shan Institute of Science and Technology), S.Y. Wang (Chung Shan Institute of Science and Technology), T.Z. Chang (Chung Shan Institute of Science and Technology), Y.P. Wang (Chung Shan Institute of Science and Technology), November 1990

An HP 8510B based RCS measurement system is presented. It can be operated in CW, hardware gating, and fast-CW modes. A VAX-3800 computer and a MAP 4000 array processor are used to speed up the data analysis and a PS 390 graphic system is used to display graphic. Three ISAR techniques, i.e., DFT approximation, focusing image processing, and diffraction limited methods, are available in the analysis program to get the target image. With an amplitude taper removing technique, this system can measure large target whose size is almost up to the size of compact range reflector.

Performance of a shaped compact range with a 12 foot quiet zone
A.L. Linsay (Harris Corporation), November 1989

This paper summarizes the performance of the new Harris 1612 Compact Range Standard Product. The Harris 1612 is a dual shaped reflector collimator system. Measured data, both amplitude and phase from the 12-foot diameter quiet zone is presented. The quiet zone was characterized using an automated two-way HP8510B based measurement system. The inherent system benefits for both antenna and RCS measurements are also discussed.

Financially justifying an antenna/RCS measurement system
J. Swanstrom (Hewlett-Packard Company), November 1989

This paper examines the economic justification process for a new Antenna or Radar Cross-Section (RCS) measurement system, and presents the techniques that can be used to determine the financial feasibility of a new system. Specific examples are given that will allow engineers to customize calculations to fit their company's specific accounting methods and labor rates.

Dual domain RCS data diagnostics
J.C. Davis (Information Systems And Research, Inc.),J. Yesford (Information Systems And Research, Inc.), L. Sheffield (Information Systems And Research, Inc.), L.A. Perna (Information Systems And Research, Inc.), November 1989

In this paper, a general methodology for data reduction and analysis of wide-band RCS data is discussed. This methodology encompasses normal image processing, clutter removal, and noise filtering. Examples of the usefulness of the approach are presented.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30