AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

RCS

Polar format interpretation of wide band RCS data
J.C. Davis (Information Systems and Research, Inc.), November 1987

Narrow band RCS measurements are usually presented as RCS versus target aspect angle in either a rectangular or polar format. Wide band measurements are not normally analyzed in the frequency domain. The normal procedure is to perform either a one or two-dimensional Fourier transform of wide band data or obtain high resolution information on the location of scattering sources. In this paper, we investigate the possible uses of the wide band data directly. In particular, we show that a natural coordinate system for analysis of these data is a polar format with frequency taking on the polar distance parameter and aspect angle taking on the polar angle parameter. This format is not coincidentally, an intermediate step in the production of fully focused two-dimensional radar images. The polar format frequency domain plots are shown to be effective at categorizing the nature of the physical scattering. This is especially true when combined with image domain filtering to isolate scattering regions of interest. In addition, it can be useful in determining anomalies in the radar measurement system performance, and in assisting the analyst to explain unexpected image domain results.

Potential near-field measurement techniques for determining near-zone and far-zone bistatic RCS
B. Cown (Georgia Tech),C.E., Jr. Ryan (Georgia Tech), J.J.H. Wang (Georgia Tech), November 1987

There is renewed interest in the idea of determining the near-zone and far-zone bistatic RCS of complex targets from near-field data. This paper addresses the issue of efficient acquisition and processing of the requisite scattered near-field electric field data for determining the wide-angle bistatic RCS of electrically-large targets. Toward that end, several potential combinations of target illumination and near-field scanning techniques are considered in this paper. The techniques considered encompass mechanical and electronic scanning methods using single probes, linear probe arrays, and planar probe arrays to accomplish the near-field scanning, combined with either (a) compact range illumination or (b) "synthesized" plane wave illumination employing a single probe, a one-dimensional (1-D) probe array, or a two-dimensional (2-D) probe array. A general Spherical Angular Function (SAF) integral formulation of near-field bistatic coupling/scattering is presented, and an approximate "deconvolution" technique for electrically-large targets is described.

Near-field bistatic RCS measurement at BDM
R. Rogers (The BDM Corporation),E. Farr (The BDM Corporation), November 1987

The techniques of near-field antenna pattern measurement can be extended to near-field RCS measurement. The motivation for doing so is precisely the same as that for near-field antenna measurements; i.e., the convenience of an indoor antenna range, and an improvement in accuracy. Although the near-field measurement problem is solvable in principle in a manner analogous to the near-field antenna problem, it requires a significantly larger amount of time to take the necessary data, and to subsequently process the data to obtain useful quantities. BDM is currently involved in an on-going program to evaluate the feasibility of near-field bistatic RCS measurements. At the time of this writing, a complete set of mathematics has been formulated to handle the probe correction and data processing. The hardware has been built, software development is near completion, and the analysis of canonical scattering objects has been completed. Experimental data soon to be taken for these objects will be presented. It is hoped that the technique will prove to be a practical approach to RCS measurements.

Performance specification for diagnostic radar imaging systems
J.C. Davis (Information Systems and Research, Inc.), November 1987

High resolution radar imaging is becoming an increasingly important component of RCS measurement systems. The primary purpose of radar imaging as applied to RCS measurements is to locate and quantify the various scattering components that contribute to the total RCS of a model under test. The technique when properly applied by trained personnel can greatly improve the productivity of measurement programs by reducing the number of measurements needed to find defects in a model, and by rapid improvement in the understanding of the scattering phenomena itself.

A State-of-the-art radar cross section system controller
B. Volkmer (Scientific-Atlanta),A.J. Wasilewski (Scientific-Atlanta), G.B. Melson (Scientific-Atlanta), J. Medina (Scientific-Atlanta), J.L. Bradberry (Scientific-Atlanta), P. Beavers (Scientific-Atlanta), November 1987

This paper explores a design approach to RCS measurements as required for the radar backscatter community. Background will be provided as to the approach and the measurement system experience of the RCS system design team. This will include the approach to computer networking, multiple range configurations and data reduction schemes. The solution under development will detail some of the requirements for the controllers and peripherals needed for the task. System design goals such as CPU independent software design, real time data acquisition and status display, multiple CPU and radar front end networks, system resource control and dynamic graphics design will be explored.

Antenna calibrations using pulsed-CW measurements and the planar near-field method
A. Repjar (National Bureau of Standards),D. Kremer (National Bureau of Standards), November 1987

For over a decade the National Bureau of Standards has utilized the Planar Near-field Method to accurately determine antenna gain, polarization and antenna patterns. Measurements of near-field amplitudes and phases over a planar surface are routinely obtained and processed to calculate these parameters. The measurement system includes using a cw source connected to an accessible antenna port and a two channel receiver to obtain both amplitude and phase of the measurement signal with respect to a fixed reference signal. Many radar systems operate in a pulsed-cw mode and it is very difficult if not impossible to inject a cw signal at a desired antenna port in order to calibrate the antenna. As a result it is highly desirable to obtain accurate near-field amplitude and phase data for an antenna in the pulsed-cw mode so that the antenna far-field parameters can be determined. Whether operating in the cw or pulsed-cw modes, one must be concerned with calibrating the measurement system by determining its linearity and phase measurement accuracy over a wide dynamic range. Tests were recently conducted at NBS for these purposes using a precision rotary vane attenuator and calibrated phase shifter. Such tests would apply not only to measurement systems for determining antenna parameters but also to systems for radar cross section (RCS) measurements. The measurement setup will be discussed and results will be presented.

A Comparison of three field probing techniques
H.C.M. Yuan (Hughes Aircraft Company), November 1987

The recent activity and study of the compact range has been increasing the past few years. Both radar cross section (RCS) and antenna measurements have been conducted in the compact range. Important research and analytical investigation has also been done in the design and construction of the reflectors so characteristic of these types of ranges. Edge diffraction from the reflector has been studied and characterized by methods of geometrical optics, geometrical theory of diffraction, physical optics and physical theory of diffraction. Treatment of edge diffraction effects on the reflector have included serrations, rolled edges, and absorbing materials. The primary goal is to obtain as perfect a plane wave as possible in the enclosed chamber with reduction of edge diffraction from the reflector.

Design of blended rolled edge for compact range reflectors
I.J. Gupta (The Ohio State University ElectroScience Laboratory),C.W.I. Pistorius (University of Pretoria), W.D. Burnside (The Ohio State University ElectroScience Laboratory), November 1987

The compact range reflector used these days for RCS and antenna measurements have rolled edges [1] to reduce the stray fields diffracted from the rim of the parabolic section. For optimum performance (small edge diffracted fields), blended rolled edges [2] are used. A blended rolled edge ensures that the radius of curvature of the surface is continuous at the junction between the paraboloid and the rolled edge. By selecting an appropriate blending function, one can make the first and higher derivatives of the radius of curvature continuous at the junction [3] which in turn results in a weaker diffracted field. However, the resulting reflector may be too large to be practical. Also, the minimum radius of curvature of the reflector surface in the lit region may become less than one fourth of the wavelength at the lowest operating frequency, which is not desirable. Thus, the choice of blending function and rolled edge parameters is quite important in the design of compact range reflector antennas. In this paper, a procedure to design blended rolled edges for such applications is discussed. The design procedure leads to a rolled edge that minimizes the edge diffracted fields while satisfying certain constraints regarding the reflector size and minimum operating frequency of the system. Some design examples are included.

The Effects of an offset fed parabolic reflector on polarization
C.E. Raiff (McDonnell Douglas Astronautics Company), November 1987

The offset fed parabola is one type of reflector used in compact radar ranges. Cross-polarization problems have been noted when a parabola is used in near field applications. A good understanding of the near field cross-polarization effects was needed to evaluate this type of reflector for a compact range. We found that the polarization vector was rotated differently at each location in the "quiet zone." The polarization vector rotation is due to the parabolic curvature. In addition, a mathematical model was derived that compares well with the data. A theoretical study of how the RCS measurements of a wing are affected is presented.

Optimized collimators-theoretical performance limits
B. Schluper (March Microwave Systems B.V.),J. Damme (March Microwave Systems B.V.), V.J. Vokurka (March Microwave Systems B.V.), November 1987

Over the last five years a considerable attention has been paid to further developments of Compact Antenna Test Ranges for both antenna and RCS measurements. For many applications, these devices proved to be more attractive than outdoor ranges or near-field/far-field transformation techniques. On the other hand, accurate operation at very low or very high frequencies can cause considerable difficulties. It is the aim of this paper to describe the theoretical limitation of collimating devices, in particular for low frequencies. For this purpose, an idealized collimator will be defined. Using the spectral components analysis a comparison of achievable accuracy will be made between collimators and outdoor ranges. Theoretical limits in the accuracy for RCS measurements will be computed for all applicable frequencies. Finally, a comparison will be made between the experiments on a dual-reflector Compact Antenna Test Range and theoretically achievable limits. Representative targets, like cylinders and rectangular plates have been used for experimental investigation. These data will also be presented.

Making precision RCS measurements on a compact range using an HP8510 and an RF switching network
A.L. Lindsay (Harris Corporation), November 1987

The development of a high efficiency compact range has made it possible to consider alternative equipment for making radar cross section measurements. Historically, high power radars were required to make measurements on low efficiency, high clutter ranges. Their high power and narrow pulse capability was essential in making precision measurements. Such instrumentation is complex and expensive. There is, however, a relatively inexpensive approach which uses test equipment commonly found in the laboratory. It is centered around an HP8510 network analyzer and an RF switching network.

A Method of evaluating conductive coatings for RCS models
A. Dominek (The Ohio State University),H. Shamansky (The Ohio State University), R. Burkholder (The Ohio State University), R. Wood (NASA Langley Research Center), W.T. Hodges (NASA Langley Research Center), November 1987

A novel method for evaluating conductive coatings used for radar cross section (RCS) scale models is presented. The method involves the RCS measurement of a short circuited cavity whose interior is coated with the material under study. The dominant scattering from such a structure occurs from the cavity rim and surface walls internal to the cavity. The method of conductivity testing has excellent sensitivity due to the energy that couples in and out of the cavity. This energy undergoes many reflections with the interior walls and thus very small losses can be detected. Calculations and measurements are shown for several different types of coatings, including coatings of silver, copper, nickel and zinc.

VHF/UHF short pulse RCS measurement system
J.F. Aubin (Flam & Russell, Inc.),R. Flam (Flam & Russell, Inc.), November 1986

Flam & Russell, Inc. has developed a short pulse radar cross section measurement system (Model 8101) which operates from VHF up to L band. This paper describes operation of the system, with emphasis given to the design considerations necessary to minimize susceptibility to a number of problems that have imposed serious limitations on achievable sensitivity at lower frequencies in pulsed RCS outdoor measurement systems. These problems have been, to a great extent, solved in the current system design. The system has been designed for use in outdoor range facilities with a variety of target sizes. A w ideband, high power transmitter is capable of producing pulses 50-350 nanoseconds wide at peak levels of up to several kilowatts. A phase coherent wide bandwidth receiver provides amplitude and phase information at video for sampling. A maximum of four independently located range gates may be selected and set with a resolution of one nanosecond. The data collection system features a three-tier processor structure for dedicated position data processing, target data processing, and system I/O and control, respectively. A real time display of RCS versus position coordinate is available to the operator, as well as a real time indication of the presence of radio frequency interference (RFI). A 60 foot reflector antenna equipped with a duo polarized feed provides full scattering matrix capability with 30 dB of polarization isolation and better than 50 dB of "ghost" suppression. Careful antenna structure and transmission line design has eliminated reverberation or "pulse ringing" problems. A radar "figure of merit" (ratio of peak transmitted power to receiver noise floor for the required pulse bandwidth) of better than 150 dB has been achieved.

RCS measurements at VHF/UHF frequencies
J.M. Ralston (System Planning Corporation), November 1986

In this paper we consider those factors having primary impact on submicrowave RCS measurements in outdoor (ground-bounce range) environments, including: 1. The target illumination problem, reflecting fundamental limits on antenna size and height 2. Measurement sensitivity as limited by thermal noise and radar frequency interference (RFI) 3. Antenna selection at VHF frequencies 4. Ground-bounce effects near Brewster's angle. 5. Clutter (due to either terrain or target support) and clutter suppression techniques. Some improvements to basic RCS measurement range design are analyzed in detail, with emphasis on mobile (variable range) antenna/radar systems.

Experimental techniques for the radar cross section measurements of complex structures
G. Ratte (Laval University),G.Y. Delisle (Laval University), M. Lecours (Laval University), November 1986

Prediction methods currently being developed for estimating the Radar Cross Section (RCS) of a complex target are based on the concurrent use of different numerical techniques each being employed in the region where it performs best. Since the high frequency techniques and the numerical methods used in the computation must deal with important rapid phase and amplitude fluctuations of the resultant scattered field, it is sometimes very difficult or impossible to know to what extent the computed solution is valid, unless measurements are available for comparison purposes.

Time domain gating in RCS measurements
J.L. Bradberry (Scientific-Atlanta), November 1986

Gating is a widely used technique of improving RCS measurements. However, the exact type of gating used has a dramatic effect on such parameters as dynamic range and clutter rejection. Time Domain Gating offers significant advantages over software gating as used in some network and spectrum analyzers. This paper explores a technique used by Scientific-Atlanta in CW and FMCW RCS measurements. With the adaptation of an external computer controlled hardware gating unit, existing RCS and antenna systems can be retrofitted for significant performance improvements.

Monostatic and bistatic scattering by metal ogival target support
A. Lai (The Ohio State University ElectroScience Laboratory),W.D. Burnside (The Ohio State University ElectroScience Laboratory), November 1986

The ogival target-support pedestal as shown in Figure 1 is claimed to have a low radar cross section (RCS); yet, it can handle very large and heavy structures. This paper attempts to find out whether this claim is true through analysis as well as measurements. The pedestal backscatter is just one aspect of this study. Another more serious issue is associated with the bistatic scattering by the pedestal which influences the target illumination. * This work was supported in part by the National Aeronautic and Space Administration, Langley Research Center, Hampton, Virginia, under Grant NSG-1613 with The Ohio State University Research Foundation.

Applications of ISAR imaging techniques to near-field RCS measurements
E.V. Sager (System Planning Corporation),J.C. Davis (System Planning Corporation), R.J. Sullivan (System Planning Corporation), November 1986

This paper discusses some of the applications of high-resolution coherent radar image processing techniques in unimproved indoor facilities. The techniques are particularly useful in situations where traditional indoor range chambers are unavailable or impractical. Experiments in an 18-foot-high warehouse building have shown that useful measurements can be made at close quarters, in a high-clutter environment.

Characterization of antennas for RCS measurements
S. Kashyap (National Research Council, Ottawa),S. Mishra (National Research Council, Canada), November 1986

This paper reviews procedures and techniques employed for calibrating antennas used in electromagnetic compatibility (EMC) measurements. Details of our measurement procedure and results using the TEM cell and the three antenna methods are described.

Troubleshooting test facilities with a high resolution instrumentation radar
T.J. Lyon (The Howland Company, Inc.),A.R. Howland (The Howland Company, Inc.), November 1986

This paper presents data from facility evaluation tasks on current projects. The data were obtained on outdoor free-space pattern test facilities, and in anechoic chamber RCS test facilities.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30