Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
D. Stein (LTV Aerospace and Defense Company),Paul Burnett (Holloman Air Force Base)
Jack Smith (Arizona State University)
David Williams (The University of Texas at El Paso), November 1988
The performance of an outdoor, ground-plane RCS measurement range can be degraded by fluctuations in the atmospheric reflectivity N. These fluctuations can introduce error into RCS measurements, particularly when they do not manifest in the radar return from the secondary calibration standard.
A propagation anomaly study at the RATSCAT RCS range compares the N-fluctuations -- obtained from meteorological instruments and separately from RF receivers -- at several levels above the ground. The fluctuation mechanisms are discussed in terms of temperature lapse rates, "constant-N" cell sizes, wind velocity, and rough ground effects. The optimal RF sensor height for propagation anomaly indications is found to depend on the cell size. This has implications for the positioning of secondary calibration standards.
L.R. Burgess (Flam & Russell, Inc.),C.T. Nadovich (Flam & Russell, Inc.),
R. Flam (Flam & Russell, Inc.), November 1988
It is common practice to window RCS data prior to inverse Fourier transformation into an image. Windowing reduces image sidelobes at the expense of some loss of resolution. When the window shape is adjusted to give the best resolution-sidelobe tradeoff for the given application, however, the apparent RCS of features in the image varies unless the correct calibration of normalization is applied. This paper discusses the proper calibration and normalization techniques to use with RCS imaging. These techniques permit efficient generation of images that accurately depict the RCS of significant target features, independent of the data window shape.
P. Swetnam (The Ohio State University),M. Poirier (The Ohio State University),
P. Bohley (The Ohio State University),
T. Barnum (The Ohio State University),
W.D. Burnside (The Ohio State University), November 1988
An instrumentation radar system suitable for collection of backscatter characteristics of targets in an indoor chamber was built and installed in the Ohio State University ElectroScience Laboratory. The radar is a pulsed system with continuous coverage from 2 to 18 GHz, and spot coverage from 26 to 36 GHz. The system was designed to have maximum flexibility for various test configurations, including complete control of the transmit waveform, H or V transmit polarization, dual receive channels for simultaneous measurement of like and cross polarization, greater than 100 dB dynamic range, and convenient data storage and processing. A personal computer controls the operation of the radar and is capable of limited data reduction and display functions. A mini-computer is used for more widely sophisticated data reduction and display functions along with data storage. This paper will present details of the radar along with measured performance capabilities of the system.
E. Walton (The Ohio State University ElectroScience Laboratory), November 1988
Modern analysis techniques of radar scattering data or radar cross section (RCS) data often include transformation to the time domain for the purpose of understanding the specific scattering mechanisms involved or to isolate or identify specific scattering points. The classic technique is to transform from the frequency domain to the time domain using an inverse (Fast) Fourier Transform (IFFT). Often, however, the scattering centers are too close together to resolve or the requirement for accuracy in the measurement of the differential time delay is too high given the IFFT inverse bandwidth.
This paper presents a technique for determining the time domain response of a radar target by processing the data using modern autoregressive (AR) spectral analysis. In this technique, the scattering from a radar target in the high frequency regime is shown to be autoregressive. This paper will show examples using the maximum entropy method (MEM) of Burg.
M. Naor (M.O.D., Haifa, Israel),A. Michaeli (M.O.D., Haifa, Israel),
D. Dvorzhetski (M.O.D., Haifa, Israel),
R. Sinai (Orbit, Advanced Technologies), November 1988
The monostatic RCS of ogival tilted pylon was calculated in a two stage computational process. First, a two-dimensional model of an infinite cylinder of ogival cross-section was employed. At the second stage, the effects of finite length and inclination were incorporated. The RCS was predicted by two independent methods, namely, the method of equivalent currents and the method of moments. Excellent agreement between the results of the two methods was found in the overlap domain of their respective validity. The results indicate a weak dependence of the RCS on the ogive ratio. Similarly, it was found that in the case of an infinite straight ogival cylinder the effect of frequency variation is negligible. The main contribution to RCS reduction is derived from the finiteness of the pylon and its tilt. It also becomes evident that beyond a certain tilt angle the marginal decrease of RCS does not justify the increasing mechanical complexity.
W.T. Wollny (Quick Reaction Corporation), November 1988
The deleterious effect of tilting the pylon on the measured RCS of a low level target is shown. A two scatterer computer model is developed to demonstrate the harmful effect of the pylon on the target signature. Predicted RCS plots are provided for the pylon to target ratios of -20, -10, 0, and +10 dB. The familiar error curve for two interfering signals is shown as applicable to bound the RCS errors of two scatterers. A method for computing the pylon RCS from linear motion RCS measurements is described with sample data plots. A knowledge of the pylon RCS allows the inclusion of measurement confidence levels on all RCS plots which is very valuable to the analyst. All radar data that is below the known RCS of the target support structure can be blanked from the plotted data to prevent confusion since these RCS values are an artifact of the measurement system and are not a true representation of the target RCS.
H. Shamansky (The Ohio State University),A. Dominek (The Ohio State University), November 1988
The compact range provides a means to evaluate the radar cross section (RCS) of a wide variety of targets, but successful measurements are dependent on the type of target mounting used. This work is concerned with the mounting of targets to a metal ogival shaped pedestal, and in particular focuses on two forms of mounting techniques: the "soft" (non-metallic) and "hard" (metallic) mounting configurations. Each form is evaluated from both the mechanical and electromagnetic viewpoints, and the limitations associated with each type are examined. Additional concerns such as vector background subtraction and target-mount interactions are also examined, both analytically and through measurements performed in the ElectroScience Laboratory's Anechoic Chamber.
R. Renfro (David Taylor Research Center), November 1988
The characteristics of a unique indoor RCS modeling facility are described.
The David Taylor Research Center (DTRC) has implemented an indoor, over-water radar cross section measurement facility. Major components of the facility are the DTRC Seakeeping Basin, an imaging radar, an underwater target mount and rotator, a calibration system, and video monitoring equipment. Initial operational capabilities include dynamic pulse-to-pulse polarization-agile measurements at X and Ku bands, elevation angles from grazing to 7 degrees, maximum target length of 50 feet, and simulated sea states adjustable between state 0 and state 3. Several data products are available, including high-resolution inverse synthetic aperture radar images. Eventual capabilities will include extended elevation angles up to 30 degrees, frequencies to beyond 100 GHz, and SAR imagery.
R.W. Kreutel (Scientific-Atlanta, Inc.), November 1988
Over the years formulations have been developed which provide an implicit measure of transfer efficiency of the compact range. Reasonable accuracy has been demonstrated for both antenna and RCS measurement applications. In general, however, these formulations require specific design details pertaining to the collimating reflector. In this note a more general formulation is examined in which efficiency is explicitly expressed in terms familiar to antenna engineers and which do not directly involve reflector parameters. Applications of this formulation are presented.
K.R. Goudey (Harris Corporation GCSD),L.R. Young (Harris Corporation GCSD), November 1988
This paper describes how corrugated feed horns are designed for compact ranges with tight pattern control. Both the amplitude and phase of the horn pattern must be invariant over a wide frequency band. A horn synthesis computer program has been developed using the JPL HYBRIDHORN computer program as the analysis module which is driven by a Harris developed synthesis code (OPTDES). This paper also discusses launching techniques used to generate the HE(11) hybrid mode in the corrugated horn as well as design methods to eliminate ringing effects observed in both the input waveguide circuits and corrugated horns when used for RCS measurements.
W.L. Tuttle (Scientific-Atlanta, Inc.), November 1988
A variety of positioner control systems are available for making antenna and RCS measurements, but few can be upgraded economically as test facilities are expanded. Positioner control system components may include a controller, positioner motor drive unit, and a position indicator. Integration of these functional components into a single modular unit to operate the desired number of axes provides the basis for a positioner control system. Other desired features may include programmability, remotability, operation outdoors, and expansion capability.
This paper will address the development of a modular positioner control system that can economically be upgraded as changing test requirements dictate. Functional capabilities such as remotability, expansion capability, and programmability will be highlighted. System configuration and integration will also be discussed.
R. Flam (Flam & Russell, Inc.),J.P. MacGahan (Flam & Russell, Inc.),
R.E. Hartman (Flam & Russell, Inc.), November 1988
This paper describes an automated radome test and evaluation system, which very accurately and quickly determines the shift in electrical boresight and loss in antenna gain caused by the presence of a radome in front of a monopulse antenna. The measurement system hardware, which is shown in Figure 1, is based on the Flam & Russell, Inc. ADAM 8003 Antenna and RCS Measurement System and consists of a DEC MicroVAX computer, Hewlett Packard 8510B network analyzer and a highly accurate two axis positioning system. The monopulse antenna and radome are attached to the same positioner. The monopulse antenna is electrically steerable, thus allowing different areas of the radome under test to be examined.
T.P. Delfeld (Boeing Military Airplane Company), November 1987
A method for the calculation of the errors induced through target-wall-target interactions is presented. Both near-field and far-field situations are considered. Far-field calculations are performed both with Fraunhoffer diffraction theory and target antenna analogies. Absorber is considered as both a specular and a diffuse scatterer. The equations developed permit trade studies of chamber size versus performance to be made.
B.J.E. Taute (The Ohio State University),I.J. Gupta (The Ohio State University),
W.D. Burnside (The Ohio State University), November 1987
Reducing ripple in the aperture field of the parabolic reflector is one of the main considerations in the design of a compact range, since it determines the "usable" target zone for RCS and antenna measurements. The usable target zone is typically defined as the aperture region where the ripple is less than 0.1 dB [1]. Studies [2,3] have shown that edge diffractions and therefore ripple can be significantly reduced by using blended rolled edges such as in Figure 1. For low aperture field ripple, it is assumed that the junction between the parabolic surface and the blended rolled edge is smooth. In practice, however, the rolled edges may be machined separately and then fitted to the main reflector. If this is done, small wedge angle errors (Figure 2) or step discontinuities (Figure 3) may be mechanically introduced at the junctions. Typically, angle deviations of plus-or-minus 0.5 degrees and steps of plus-or-minus 0.005 inches may be expected. If the parabola and part of the rolled edge is machined as a unit, diffraction due to discontinuities in the mechanical junction between this surface and the rest of the rolled edge can have less effect on ripple in the aperture field. Now, the questions to be answered are: * How much of the target zone is lost due to discontinuities at the edge of the parabola? * How much of the rolled edge need to be machined with the parabola to prevent mechanical discontinuities from decreasing the usable target zone? * What range of discontinuities can be tolerated? In this paper, these questions are answered for a 12 foot radius semi-circular compact range reflector with cosine-blended rolled edges.
Harris Corporation has developed and introduced a miniature version of its shaped compact range called the Model 1603. This model is actually a scaled version of its very large compact ranges. The range features a three foot quiet zone in a very compact configuration, allowing the range to be set up in an anechoic chamber as small as a normal conference room. Performance features are equivalent to those achieved in large compact ranges by Harris, such as the Model 1640 with a forty foot quiet zone. Key features are very low quiet zone ripple, extremely low noise floor, and low cross polarization. This range can be used for the full gamut of precision RCS testing of small models or precision testing of antennas. It should also find wide application in production testing of these items. Harris can also provide turnkey compact range test systems based on the Model 1603 that use available radar instrumentation. Several of these miniature compact ranges have been delivered and are in use.
S. Brumley (Motorola Govt. Elect. Group), November 1987
Current demands for accurate low-level radar cross section (RCS) measurements require anechoic chambers and compact ranges to have extremely low background scattering levels. Such demands place difficult requirements on the entire chamber and warrant the need to predict and mathematically model chamber performance. Accurate modeling, prior to chamber construction, also aids in chamber performance optimization through improved chamber designs.
C.M. Luke (Scientific-Atlanta, Inc.),B.C. Brock (Sandia National Laboratories),
M.C. Baggett (Scientific-Atlanta, Inc.), November 1987
A way has been found to utilize the reflector return in a compact range as a source of continuous drift compensation. This is performed by translating receive polarizations 45 degrees with respect to the transmit polarizations to ensure returns in co- and cross-polarizations. An added benefit is the simplicity of alignment for the polarization calibration standard.
D. Mensa (Pacific Missile Test Center),K. Vaccaro (Pacific Missile Test Center), November 1987
A wide variety of precise, automatic instrumentation systems is currently available for RCS testing. These systems, either commercially available as integrated units or assembled from laboratory test instruments, can automatically measure the RCS of a target over fine frequency increments spanning wide bandwidths. When the frequency responses are measured for discrete increments of target rotation, the resulting two-dimensional (frequency-angle) data arrays can be processed to obtain two-dimensional RCS images.
S. Brumley (Motorola Govt. Elect. Group),D. Droste (Motorola Govt. Elect. Group), November 1987
This paper discusses an anechoic chamber absorber evaluation which was conducted for the purpose of improving anechoic chamber and compact range performance through better absorber characterization. This study shows that performance of conventional absorber materials is dependent on selection of the material's shape, size and orientation with respect to the incident energy direction. This, demonstrates the importance of better characterization of the material. Nonhomogeneities in the material composition and physical structure were also found to significantly modify performance; in some cases even improving it. Also shown, is the need for improved evaluation techniques and procedures over conventionally used methods. An evaluation procedure using modern imaging techniques is presented. Several measured results for various absorber types and sizes are presented which show the usefulness of the evaluation technique and demonstrate relative performance characteristics for these materials. Measured reflectivity data on various absorber types, which consistently show better performance than levels specified by the vendors, are also presented.
R.G. Immell (Motorola Government Electronics Group), November 1987
Motorola's Government Electronics Group (GEG) located in Scottsdale, Arizona has recently completed construction of an indoor Antenna/RCS Test Facility. Motorola achieved quality construction of this new facility by utilizing local building contractors working under Motorola supervision through concept study, design, and construction phases. Motorola achieved quality chambers without turn-key costs. Three anechoic chambers and one shielded computer room were fabricated. The chambers sizes vary from 20'W x 16'H x 41'L to 36'W x 36'H x 72'L. All chambers were evaluated using techniques described by MIL-STD-285 (Attenuation measurements for enclosures, electromagnetic shielding, for electronic test purposes, Method of) and indicated shielding effectiveness, before absorber installation of -60 to -70 db at 400 MHz and -80 db from 1-18 GHz. Shielding effectiveness increased to -80 dB at 400 MHz and to greater than -115 dB from 1-18 GHz after absorber installation. In addition, the building contains eight individual security areas meeting government standards for security as prescribed in the Defense Intelligence Agency Manual (DIAM 50-3).
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.