AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

Multi-Layered Flat Metamaterial Lenses: Design, Prototyping and Measurements
Yahya Rahmat-Samii,Anastasios Papathanasopoulos, November 2020

With the advent of small-scale satellite technologies, a significant challenge faced by antenna engineers today is the design of high-gain and low-profile lens antennas. The conventional approach to lens design has been to shape the surfaces of dielectric materials to form homogeneous dielectric lenses. Alternatively, the refractive index of the lens can be varied throughout the lens body to form Gradient-Refractive Index (GRIN) lenses, which are now conceivable because of the advent of metamaterials. Optical ray paths are controlled inside the GRIN meta-lens rather than relying only on refraction at the air-lens interface. In particular, spherically symmetric lenses (such as the Luneburg lens) can achieve much greater control over the ray trajectories than homogeneous lenses since incoming electromagnetic waves can travel in a curved path within the volume of the lens. Due to spherical symmetry, however, the material that fills the volume of the spherically symmetric GRIN lens increases dramatically, and the weight becomes impractical for applications that require highly directive antennas. In order to overcome this disadvantage, the concepts of flat meta-lenses resulting into lightweight and slimmed alternatives to the spherically symmetric lenses have recently gained attention. In this work, we first present a methodology for the synthesis of the refractive index of flat GRIN lens antennas. Previous methods to obtain the material inhomogeneity relied on the assumption that the ray path is straight within the volume of the lens. These methods are approximate and applicable only for on-axis fed lenses. Contrary to the previous methods, the applied numerical synthesis algorithm based on Geometrical Optics and Particle Swarm Optimization is used to synthesize both on-axis and off-axis fed flat lenses with circularly symmetric aperture phase thus providing conically scanned beams for the off-axis designs. Then, metamaterial elements of variable sizes distributed on planar dielectric substrates are synthesized to form a multi-layered flat metamaterial lens and satisfy the required refractive index distribution. Simulation and near-field/far-field measured results of a proof-of-concept prototype of a multi-layered flat lens operating at 13.4 GHz are also presented. Additionally, microwave holographic approach is used to evaluate the goodness of the exit aperture amplitude and phase.

Antenna measurement system using optical fiber link and vertical articulated robot.
Satoru Kurokawa,Michitaka Ameya, Masanobu Hirose, November 2020

5th generation mobile network will use 28 GHz band and 38 GHz band in Japan. We developed compact type antenna measurement system using optical fiber link and vertical articulated robot for 5G antenna measurement. Our developed optical fiber system consists of 850 nm multi-mode VCSEL (Vertical cavity surface emitting laser diode) and PD-TIA (Photo diode with transimpedance amplifier). Our optical fiber link can use for microwave measurement from 10 MHZ to 30 GHz with 90 dB dynamic range and up to 40 GHz with 70 dB dynamic range. Our using vertical articulated robot has 6-axis 1 m length arm that can hold WR-28 open ended waveguide probe (OEWG).

Automotive Cellular MIMO Field Test Result Vs Chamber Measurement
Olutola Jonah, Leo Lanctot, November 2018

In the last few years, MIMO (Multiple-Input-Multiple-Output) Cellular Antenna system functionality for call, text and data streaming in Automobile has been developed and integrated into vehicles lines, by several Automotive OEMs. However, the performance of the MIMO Cellular Communication system in term of throughput on the uplink and downlink fluctuates, and is influenced by several dynamic network factors such as, Network traffic, time of day, network size and location/environment and which is in contrast to an (Over-The-Air) OTA chamber Environment. This paper compares the MIMO Cellular Antenna performance in Field Test with MIMO Cellular Antenna performance in an OTA Chamber Environments. The parameters that will be compared in the study measurements are throughput, SINR (Signal-to-Interference-Plus-Noise Ratio) and RSSI (Received Signal Strength Indicator).

Correction of Non-ideal Probe Orientations for Spherical Near-Field Antenna Measurements
Rasmus Cornelius, Dirk Heberling, October 2017

Positioning in near-field antenna measurements is crucial and often an absolute position accuracy of ?\50 is required. This can be difficult to achieve in practice, e.g. for robotic arm measurement systems and/or high frequencies. Therefore, optical measurement devices are used to precisely measure the position and orientation. The information can be used to correct the position and orientation during the measurement or in the near-field to far-field transformation. The latter has the benefit that the measurement acquisition is typically faster because no additional correction movements are needed. Different methods for correction of non-ideal measurement positions in r, ? and f have been presented in the past. However, often not only the relative position but also the orientation between the antenna under test (AUT) and the probe coordinate system is not perfect. So far, correction and investigation of the related non-ideal probe orientations has been neglected due to the assumption that the probe receiving pattern is broad. In this paper, non-ideal probe orientations will be investigated and a spherical wave expansion procedure which corrects non-ideal probe orientations and positions will be presented. This is achieved by including an arbitrary probe pointing in the probe response calculation by additional Euler rotations of the probe receiving coefficients. The introduced pointwise higher-order probe correction scheme allows an exact spherical wave expansion of the radiated AUT field. The transformation is based on solving a system of linear equations and, thus, has a higher complexity compared to Fourier-based methods. However, it will be shown that most of the calculations can be precomputed during the acquisition and that solving the linear equation system can be accelerated by using iterative techniques such as the conjugate gradient method. The applicability of the proposed method is demonstrated by measurements where an intentional misalignment is introduced. Furthermore, the method can be used to include full probe correction in the translated spherical wave expansion algorithm. In conclusion, the proposed procedure is a beneficial extension of spherical wave expansion methods and can be applied in different measurement scenarios.

Highly accurate fully-polarimetric radar cross section facility for mono- and bistatic measurements at W-band frequencies
Andreas Olk, Kais-Ben Khadhra, Thiemo Spielmann, October 2017

New requirements in the field of autonomous driving and large bandwidth telecommunication are currently driving the research in millimeter-wave technologies, which resulted in many novel applications such as automotive radar sensing, vital signs monitoring and security scanners. Experimental data on scattering phenomena is however only scarcely available in this frequency domain. In this work, a new mono- and bistatic radar cross section (RCS) measurement facility is detailed, addressing in particular angular dependent reflection and transmission characterization of special RF material, e.g. radome or absorbing material and complex functional material (frequency selective surfaces, metamaterials), RCS measurements for the system design of novel radar devices and functions or for the benchmark of novel computational electromagnetics methods. This versatile measurement system is fully polarimetric and operates at W-band frequencies (75 to 110 GHz) in an anechoic chamber. Moreover, the mechanical assembly is capable of 360° target rotation and a large variation of the bistatic angle (25° to 335°). The system uses two identical horn lens antennas with an opening angle of 3° placed at a distance of 1 m from the target. The static transceiver is fed through an orthomode transducer (OMT) combining horizontal and vertical polarized waves from standard VNA frequency extenders. A compact and lightweight receiving unit rotating around the target was built from an equal OMT and a pair of frequency down-converters connected to low noise amplifiers increasing the dynamic range. The cross-polarization isolation of the OMTs is better than 23 dB and the signal to noise ratio in the anechoic chamber is 60 dB. In this paper, the facility including the mm-wave system is deeply studied along with exemplary measurements such as the permittivity determination of a thin polyester film through Brewster angle determination. A polarimetric calibration is adapted, relying on canonical targets complemented by a novel highly cross-polarizing wire mesh fabricated in screen printing with highly conductive inks. Using a double slit experiment, the accuracy of the mechanical positioning system was determined to be better than 0.1°. The presented RCS measurements are in good agreement with analytical and numerical simulation.

Analysis of Time and Direction of Arrival (TADOA) Data using Basis Pursuit in the AFRL One-RY Antenna Measurement Range
Brian Fischer, Ivan LaHaie, Michael Blischke, Brian Kent, Brittany Wells, James Stewart, October 2017

Time and Direction of Arrival (TADOA) analysis of field probe data has been an accepted method for characterizing stray signals in an antenna measurement range for many years ([1], [2]). Recent uncertainty investigations at the OneRY range have shown a need for increased resolution to isolate and characterize energy in TADOA images so that resources can be carefully applied to reduce the uncertainty from these stray signals. This is accomplished by modeling the TADAO image as the solution to a Basis Pursuit (BP) l1 minimization problem. This paper outlines the model development and shows concrete examples from OneRY field probe data where BP allows for the identification of stray energy which was previously difficult to find. We also show how the BP optimization context can be using to remove contamination from the data through the inclusion of additional basis functions ([3]). I.J. Gupta, E.K. Walton, W.D. Burnside, “Time and Direction of Arrival Estimation of Stray Signals in a RCS/Antenna Range,” Proc. of 18th Annual Meeting of the Antenna Measurement Techniques Association (AMTA '96), Seattle WA, September 30-October 3, 1996, pp. 411-416. I.J. Gupta, T.D. Moore, “Time Domain Processing of Range Probe Data for Stray Signal Analysis,” Proc. of 21st Annual Meeting of the Antenna Measurement Techniques Association (AMTA '99), Monterey Bay CA, October 4-8, 1999, pp. 213-218. B.E. Fischer, I.J. LaHaie, M.H. Hawks, T. Conn, “On the use of Basis Pursuit and a Forward Operator Dictionary to Separate Specific Background Types from Target RCS Data,” Proc. of 36th Annual Meeting of the Antenna Measurement Techniques Association (AMTA '14), Tucson AZ, October 12-17, 2014, pp. 85-90.

Determination of the Far-Field Radiation Pattern of a Vehicle Mounted VHF Antenna From a Set of Sparse Near-Field Measurements
Scott Kordella, Kenneth Grimm, October 2017

The paper summarizes the performance of a new near-field to far-field (NF/FF) transform approach for a VHF vehicle mounted AUT test case, and compares the approach with the spherical measurement approach. The NF/FF transformation is based on the solution of an inverse problem in which the measured NF and predicted FF values are attributed to a set of equivalent electric and magnetic surface currents which lie on a convex arbitrary surface that is conformal to the antenna under test (AUT). The NF points are conformal to the AUT, reducing the number of samples and relaxing positioning requirements used in conventional spherical, NF/FF geometries. A pseudo inversion of the matrix representing the mapping of the equivalent sources into the near-field samples is obtained by using the singular value decomposition (SVD), which is used to form an approximation of the inverse of the matrix. This inverse, when multiplied by the NF measurement vector, solves for the efficiently radiating components of the current, which are used to compute the FF in a straightforward manner. Keywords—Antenna Near-Field to Far-Field Transformation, Electromagnetic Inverse Problems.

Measurements of Incident Radio Frequency Power levels from the L3 Technologies ProVision Body Scanner for the National Academy of Science
Brian Kent, Tri Van, Ton Van, Kevin Hamblin, Jennifer Westhoven, October 2017

The Transportation Security Administration is tasked with the job of performing safety screening of millions of air travel passengers annually in a safe and efficient manner. One of the most widely deployed detection system is the L3 Technologies “Provision” body scanner, which utilizes millimeter wave radio frequencies (RF). Have you ever wondered what type and levels of RF energy are used to execute this routine security screening test? Recently, the Department of Homeland Security, Transportation Security Administration, tasked the National Academies of Science (NAS) to execute an updated safety analysis of the L3-Comm manufactured TSA ProVision Body Scanner units deployed in airports world-wide. In the process of executing their charter, the NAS realized there was very little peer-reviewed published data on calibrated field incident power within the ProVision scanner itself. While L3-Comm has their own factory acceptance program, the NAS wanted independent measurements executed on L3-Comm machines at four randomly selected airports. The NAS therefore contracted with the team of BerrieHill Research and Applied Research Associates to design a specialized field probe that could measure the RF emanations of the ProVision Units. This very challenging measurement environment required design ingenuity to fulfill the contract needs, since our team was not allowed to physically connect to any part of the ProVision machine. We had to place a field measurement device inside the unit where the passenger stands, and record all data over the air only. This paper will completely describe the BRC/ARA ProVision Scanner field probe measurement system, and present calibrated RF field measurements along with an uncertainty analysis of typical results.

A High Precision Group Delay Measurement Method for Circular Polarized High Gain Antennas
Georg Strauss, October 2017

In this contribution we demonstrate a method to measure the absolute Group Delay (GD) of a high gain dual feed offset reflector antenna for circular polarized signals in Ku- and S-band by which we reach a measurement accuracy better than 10 picoseconds. At first we discuss the definition and different possible measurement methods of GD. We specifically show that the utilization of the antennas phase centre does not lead to the demanded measurement accuracy. Instead we propose a measurement method that uses an electrically small Reference Antenna (RA). We use the measurement of the GD of the RA as a reference for the GD of the Antenna Under Test (AUT). Therefore the exact positions of the reference planes of the corresponding wave guide ports have to be ensured. For this we made use of a theodolite. These measurements must be performed in a Compensated Compact Range to meet the strict requirements of plane waves. Here the CCR of the Lab for Satellite Communication, Munich University of Applied Sciences was used. The GD of the (electrically small) RA is determined by measuring the GD of two identical RAs separated by an exact known free space distance and by referencing these measurements to the measured GD of the same arrangement, where the free space is bypassed by a long high precision rectangular wave guide with well-known dimensions. We demonstrate that by using a soft gating method the accuracy of the measurement results can be tremendously improved. Measurement results parametrized by the width of the gate window in the time domain are discussed. We further discuss the accuracy of the measurement results quantitatively and we especially show, that the influence of an antenna misalignment is negligible, as long the alignment error is smaller than the one dB power beam width. The measurement campaign was commissioned by the European Space Agency (ESA) to meet the requirements of the project Atomic Clock Ensemble in Space (ACES). By ACES a microwave link is used to compare the times given by different atomic clocks in space and on earth, so three ACES ground terminals were tested.

Comparison of Facilities for Low Level Coupling Tests in UAV EMC Certification
David Escot Bocanegra, Sergio Fernández Romero, Patricia López Rodríguez, Manuel Jesús Añón Cancela, David Poyatos Martínez, October 2017

Electromagnetic Compatibility (EMC) certification, aimed to ensure Air Vehicles (AV) safety, imposes the fulfilment of a number of requirements prior to flying in the airspace, in terms of usual Electromagnetic Interference (EMI) threats. Among them, and in relation to this study, the High-Intensity Radiated Field (HIRF) effects. Nowadays, Unmanned Aerial Vehicles (UAVs) regulations are being developed by several countries taking into account different safety requirements, proportionate to the risks. When the UAV risk is high due to its weight and dimensions, the certification requirements will be similar to those for manned aircraft. In this regard, there are two methods of evaluating the HIRF performance of a whole aircraft: traditional aircraft high level tests or alternative aircraft low level coupling tests. In any case, these kinds of tests need to be performed in dedicated test sites. Due to the size of aircraft, Open Area Test Sites (OATS) have been routinely used for these purposes. But they are outdoor facilities and suffer from intrinsic disadvantages, probably the most important one being the necessity of dealing with the vagaries of weather. As a result, alternatives to deal with EMC tests of such large items have been occasionally sought. This paper aims at comparing the results obtained when measuring part of the fuselage of an actual UAV in two test sites, an OATS and a Reverberation Chamber (RC). Two aircraft low level coupling tests are studied in depth, namely, Low Level Direct Drive (LLDD) and Low Level Swept Fields (LLSF) tests. In the former, the coaxial return technique was employed and, consequently, the reverberation chamber was used only as a mere shelter being the aim to confirm that the RC structure do not affect the results and good agreement with OATS is obtained. On the other hand, the LLSF tests were conducted in the RC with the paddle in stirrer mode and compared with the worst-case result obtained for several illuminations in OATS.

Radiation Center Estimation from Near-Field Data Using a Direct and an Iterative Approach
Cosme Culotta-López, Kui Wu, Dirk Heberling, October 2017

Spherical Near-Field (SNF) measurements are an established technique for the characterization of an Antenna Under Test (AUT). The normal sampling criterion follows the Nyquist theorem, taking equiangular samples. The sampling step size depend on the smallest sphere that, centered in the measurement’s coordinate system, encloses the AUT, i.e. the global minimum sphere. In addition, a local minimum sphere can be defined as the sphere with minimum radius which, centered in the AUT, encloses it alone. The local minimum sphere is always equal or smaller than the global minimum sphere, being equal when the AUT is centered in the measurement’s coordinate system. It is assumed that the local minimum sphere’s center coincides with the radiation center. Furthermore, it is possible to compute a Translated Spherical Wave Expansion (TSWE) centered in the local minimum sphere, thus needing less measurement points, as long as the relative position of its center is known. Due to practical reasons, it is not always possible to easily locate the radiation center. In this paper, the relative position of the radiation center of an AUT with respect to the measurement's coordinate system’s center is estimated from SNF data using two approaches. The first approach takes the phase center as an estimation of the radiation center and is based on the method of moving reference point, strictly valid for the far-field case, analyzing its error at different near-field distances. The second approach is based on a spherical modes' spectrum analysis: the closer the AUT’s radiation center is to the coordinate system's center, the larger the power fraction in the lower modes will be. The proposed algorithm iteratively displaces the SWE and checks the power in a predefined number of modes until the convergence criterion is fulfilled. It is important to note that no near-field to far-field transformation is used, for the less measurement points taken do not allow it. A thorough analysis of the estimation error is done by simulation for different cases and antennas. The estimation error of both methods is compared and discussed, highlighting the convenience of each method depending on the requirements.

Nearfield Antenna Measurements over Seawater – Some Preliminary Thoughts
David Tonn, October 2017

The principles of near-field antenna measurements and scanning in Cartesian and spherical coordinates are well established and documented in the literature, and in standards used on antenna ranges throughout government, industry, and academic applications. However the measurement methods used and the mathematics that are applied to compute the gain and radiation of the pattern of the test antenna from the near-field data assume typically that the antenna is operating in free space. This leaves several questions open when dealing with antennas operating over a lossy ground plane, such as the ocean damp soil, etc. In this paper, we shall discuss some of the motivation behind an examination of the physics and mathematics involved in performing a near-field antenna measurement over a seawater ground plane. Examples of past work in this are shall be discussed along with some of the challenges of performing far field antenna measurements in the presence of the air-sea interface. These discussions lead to some fundamental questions about how one defines gain in this environment and whether or not a near field approach could be beneficial. This will lead to some discussion of when and how the existing modal field expansions used in near-field measurements may need to be adjusted to account for the presence of the ground plane created by the ocean surface. An example of the limiting case of an antenna operating over a metallic ground plane will be discussed as a stepping stone to the more general problem of an antenna operating over a lossy ground plane.

Cost Functions in Near-Field Spherical Scanning Data Processing Algorithms
Michael Francis, Ronald Wittmann, October 2017

Spherical wave coefficients are chosen to minimize a cost function that is a norm of the residual of the fit. For example, in standard orthogonality-based processing algorithms [1], the cost function is an integral (over 4 p steradians) of the squared amplitude of the difference between actual measurements and predicted values. Some recent work [2,3] at NIST has led to the use of discrete norms where the integral is replaced by a weighted sum. We explore issues regarding the choice of these weights, the relative performance of different weighting schemes, and the relation between the continuous and discrete cases. These norms are mathematically equivalent if there is a solution with zero residual. In practice, we have observed noticeable variation due to the presence of measurement errors, including multiple reflections, room reflections… Also, different weighting schemes are associated with widely varying condition numbers. When the condition number is large, small measurement errors can lead to large errors in the result. Additionally, we show that the integral cost function mentioned above can be reduced to a discrete quadrature. M.H. Francis and R.C. Wittmann, Chp. 19, “Near-Field Scanning Measurements: Theory and Practice” in Modern Antenna Handbook, ed. C.A. Balanis, John Wiley & Sons, 2008. R.C. Wittmann, B.K. Alpert, M.H. Francis, “Near-field, spherical-scanning antenna measurements with nonideal probe locations,”IEEE Antennas and Propagat., vol. 52, pp. 2184 – 2186, August 2004. R.C. Wittmann, B.K. Alpert, M.H. Francis, “Near-field antenna measurements with nonideal measurement locations,”IEEE Antennas and Propagat., vol. 46, pp. 716 – 722, May 1998.

Assessment of a 3D-Printed Aluminum Corrugated Feed Horn at 118.7503 GHz
Joshua Gordon, Lavanya Periasami, Albin Gasiewski, David Novotny, Michael Francis, Ronald Wittmann, Jeffrey Guerrieri, October 2017

We investigate all-metal 3D printing as a viable option for millimeter wave applications. 3D printing is finding applications across many areas and may be a useful technology for antenna fabrication. The ability to rapidly fabricate custom antenna geometries may also help improve cub satellite prototyping and development time. However, the quality of an antenna produced using 3D printing must be considered if this technology can be relied upon. Here we investigate a corrugated feed horn that is fabricated using the powder bead fusion process for use in the PolarCube cube satellite radiometer. AlSi10Mg alloy is laser fused to build up the feed horn, including the corrugated structure on the inner surface of the horn. The intricate corrugations, and tilted waveguide feed transition of this horn made 3D printing a compelling and interesting process to explore. We will discuss the fabrication process and present measurement data at 118.7503 GHz. Gain extrapolation and far-field pattern results obtained with the NIST robotic antenna range CROMMA are presented. Far-field pattern data were obtained from a spherical near-field scan over the front hemisphere of the feed horn. The quasi-Gaussian HE11 hybrid mode supported by this antenna results in very low side lobe levels which poses challenges for obtaining good SNR at large zenith angle during spherical near field measurements. This was addressed through using a single alignment and electrical calibration while autonomously changing between extrapolation and near-field measurements using the robotic arm in CROMMA. The consistency in parameters between extrapolation and near-field measurements allowed the extrapolation data to be used in-situ as a diagnostic. Optimal near-field scan radius was determined by observing the reflection coefficient S11 during the extrapolation measurement. The feed horn-to-probe antenna separation for which |S11| was reduced to 0.1 dB peak-to-peak was taken as the optimal near-field scan radius for the highest measurement SNR. A comparison of these measurements to theoretical predictions is presented which provides an assessment of the performance of the feed horn.

RCS Measurements and Imaging on Arrays of Retro-reflectors
Pax Wei, October 2017

For features of very weak scattering while masked by background and clutter, care must be taken in the measurement design as well as data processing, in order to extract the true RCS values. A good example of flush-mounted fasteners for a low-observable (LO) aircraft, arranged in an array, was reported by Lutz, Mensa, and Vaccaro [1]. In the Boeing 9-77 range, retro-reflectors (called retros) were routinely taped on a test-body for monitoring its 3-D locations and angles during measurements. Though the retro’s RCS may be several orders below that of a test-body, a challenge was to discover their exact values. In the millimeter wave range (MMWR), we measured 2-D arrays of retros arranged in both square and hexagonal lattices taped onto a flat metal surface pitched 20o down. RCS measurements were made as a function of frequency and aspect angle. From the 2-D FFT images, the nominal RCS for a retro in VV polarization was found to be -75 dBsm, independent of the geometry and number of retros even down to one unit-cell [2]. But for the HH polarization, there is no backscattering from such a flat metal surface. References [1]. J. Lutz, D. Mensa, and K. Vaccaro, "RCS measurements of LO features on a test body," Proc. 21st AMTA, pp. 320-325 (1999). [2]. P. S. P. Wei and J. P. Rupp, " RCS measurements on arrays of weak scatterers enhanced by diffraction," Proc. 26th AMTA, pp. 263-268 (2004). ---------------------------------------------- ** Sam Wei is at: 4123 - 205th Ave. SE, Sammamish, WA 98075-9600. Email: paxwei3@gmail.com, Tel. (425) 392-0175

Development of A New Atom-Based SI Traceable Electric-Field Metrology Technique
Christopher Holloway, Matt Simons, Josh Gordon, October 2017

One of the keys to developing new science and technologies is to have sound metrology tools and techniques. Whenever possible, we would like these metrology techniques to make absolute measurements of the physical quantity. Furthermore, we would like to make measurements directly traceable to the International System of Units (SI). Measurements based on atoms provide such a direct SI traceability path and enable absolute measurements of physical quantities. Atom-based measurements have been used for several years; most notable are time (s), frequency (Hz), and length (m). There is a need to extend these atom-based techniques to other physical quantities, such as electric (E) fields. We are developing a fundamentally new atom-based approach for that will lead to a self-calibrated, SI traceable E-field measurement and has the capability to perform measurements on a fine spatial resolution in both the far-field and near-field. This new approach is significantly different from currently used field measurement techniques in that it is based on the interaction of radio-frequency (RF) E-fields with Rydberg atoms (alkali atoms placed in a glass vapor-cell that are excited optically to Rydberg states). The Rydberg atoms act like an RF-to-optical transducer, converting an RF E-field strength to an optical-frequency response. In this new approach, we employ the phenomena of electromagnetically induced transparency (EIT) and Autler-Townes splitting. This splitting is easily measured and is directly proportional to the applied RF E-field amplitude and results in an absolute SI traceable measurement. The technique is very broadband allowing self-calibrated measurements over a large frequency band including 500 MHz to 500 GHz (and possibly up to 1 THz and down to 10's of megahertz). We will report on the development of this new metrology approach, including the first fiber-coupled vapor-cell for E-field measurements. We also discuss key applications, including self-calibrated measurements, millimeter-wave and sub-THz measurements, field mapping, and sub-wavelength and near-field imaging. We show results for mapping the fields inside vapor cells, for measuring the E-field distribution along the surface of a circuit board, and for measuring the near-field at the aperture in a cavity.

Common Microwave Absorbers Evaluations in W-band (75-100 GHz)
Zhong Chen, October 2017

Understanding absorber performance in the W band (75-100 GHz) has become increasingly important, especially with the popular use of W band radars for automotive range detections. Commercial absorber performance data is typically available only to 40 GHz. Measurements performed in the W band in anechoic chambers are often under the assumptions that high frequency absorber data can be extrapolated from the data below 40 GHz. In this paper, we provide a survey of common microwave absorbers in the W band. It shows that the extrapolated data from the lower frequencies are not accurate. Absorber analysis models for low frequencies such using homogenization concept are no longer valid. This is because, for the millimeter wave, microstructures of the foam substrate become important, and the dimensions of the pyramids are much greater than the wavelengths. We examine performance variations due to parameters, such as carbon loading, shape, and thickness of the absorbers. We will also show how paint on the absorber surface might affect the absorber reflectivity, and if the common practice of black-tipping (leaving the tip of the absorbers unpainted) is an effective technique to alleviate paint effects.

Accuracy Enhancement of Ground Reflection Range Measurements Using a Two-Element Array Source Antenna
Artem Saakian, Frederick Werrell, October 2017

One of the sources of the measurement errors in outdoor antenna test ranges, when testing from VHF through C-Band, is the ground reflected signal between probe antenna and the antenna under test (AUT). Those errors are due to antenna(s) relatively large beam width(s) at these frequencies, especially when AUT is placed on the large platform such as an aircraft. If reflected wave is not eliminated by the use of absorbers at the reflection point or redirection by the use of diffraction fences, then the range operates as a ground reflection range (GRR), where the reflected signal creates a lobbing pattern when the direct and reflected signals are overlaying in- and out-of-phase as a function of position and frequency, causing undesirable amplitude variations at the test point. Ground reflections may be a major cause of error for GRR measurements when testing large antennas or antennas mounted on large structures which require a large displacement of the AUT during the antenna pattern collection process. A concept of using vertically positioned two-element array probe antenna (source antenna) to suppress ground-reflected signals in GRR-s is presented in this article. Suppression is achieved by pointing first null of the probes gain pattern towards the reflection point on the ground. All analytical evaluations are based on geometrical optics approach. Comparison of the proposed approach to a traditional single-element probe (source) antenna approach, demonstrates a significant improvement in measurement accuracy. Estimates and verifications of analytical evaluations are based on Computational Electromagnetics (CEM) modeling tool such as WIPL-D code. Simulations are performed in the VHF frequency band (200 MHz).

A Cylindrical Reconfigurable Antenna Technology with Full Hemispherical Coverage
Gregory Kiesel, Efstrateos Strates, October 2017

Reconfigurable antennas provide the ability to electronically change the antenna’s performance, which allows the antenna’s band of operation and gain pattern to be rapidly adapted to meet system requirements. A cylindrical, conformal reconfigurable antenna is presented which tunes over a wide band and provides full 360° azimuth coverage. The antenna maintains a realized gain (with mismatch and loss) better than a dipole from 800 MHz to 3 GHz, using the antenna’s gain to compensate for losses in the antenna. The antenna is designed and characterized with the cylinder’s bottom over a finite ground plane (no other antenna ground planes are used). The antenna is constructed using a modular approach out of a series of identical boards which act as antenna pixels. Each pixel contain four RF switches (one for each side of the board) along with contacts for control and ground wires. By fragmenting the reconfigurable antenna into individual pixel boards, one can construct elements of arbitrary size and shape with the primary physical constraint being how densely the electronics can be fabricated. By providing flexibility to scale in size, the antenna implementation can be optimized for more gain or for a smaller footprint. Two scaled versions of the same architecture have been constructed out of the same pixels to demonstrate the flexibility of the approach. In this paper we present data demonstrating more than 2 dBi gain from 1.2 GHz to 2.5 GHz band with beamwidths as narrow as 60°. Beam patterns are presented for GSM-900, GMS-1900, and WiFi frequencies. Finally, we will show the antenna element’s ability to maintain gain in a specific direction while forming a null over a series of offset angles.

An RCS-based Wall-reflectivity Technique - The First On-site Test Results
Amin Enayati, Joachim Wesemael, October 2017

Among different measurement techniques for the wall reflectivity, an RCS_based technique has been implemented and test results are reported. For most of the anechoic chambers, the factory acceptance test and a quality-control check is sufficient for the customers to be sure that the absorbers used to line their chamber are good enough. In some cases, a quiet-zone reflectivity measurement will certify that the chamber yields the quietness as needed for the specific application of the customer. This last technique is mostly used in the far-filed ranges. However, in some anechoic chambers, e. g. some compact ranges, the customer wants to know the effect of the installation and the shipment on the final absorber installed in the room. That is why, they ask for a wall reflectivity measurement to see the reflectivity of the absorbers after being installed. The main problem to be solved when talking about wall reflectivity is the un-wanted clutter in the room which needs to be compensated for. Last year at AMTA 2016, we have introduced a clutter-removal technique to reduce the unwanted shattering levels. That was supported by some lab implementations and accordingly some limitations in the implementation. This paper, explains the result of the first practical on-site test done in an anechoic chamber. Many different points in the chamber have been tested and a detailed discussion of the results are brought to view.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31