AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

High-polarization-purity feeds for anechoic chamber, compact, and near field test ranges
R. Gruner,J. Hazelwood, November 1993

With the recent use of dual-polarized transmission and reception on communications links, the capability to perform accurate polarization measurements is an important requirement of test-range systems. Satellite antennas are commonly measured in the clean, protected environment of compact and near-field ranges, and a circularly polarized feed/field probe is a primary factor in establishing their polarization properties. The feeds also provide excellent source-horn systems for tapered anechoic chambers, where their circular symmetry and decoupling of the fields from the absorber walls improve the often troublesome polarization characteristics of tapered chambers. Circularly polarized feeds are generally composed of four primary waveguide components: the orthomode transducer, quarter-wave polarizer, scalar ring horn, and circular waveguide step transformer. Linearly polarized feeds omit the quarter-wave polarizer. This paper discusses the design and performance of high-polarization-purity source feeds for evaluating the polarization properties of antennas under test. Circularly polarized feeds have been constructed which operate over 10- to 20-percent bandwidths from 1.5 to 70 GHz. Gain values are generally in the area of 12 to 18 dBi, with cross-polarization isolation in excess of 40 dB. Representative measured data are presented.

High-polarization-purity feeds for anechoic chamber, compact, and near field test ranges
R. Gruner,J. Hazelwood, November 1993

With the recent use of dual-polarized transmission and reception on communications links, the capability to perform accurate polarization measurements is an important requirement of test-range systems. Satellite antennas are commonly measured in the clean, protected environment of compact and near-field ranges, and a circularly polarized feed/field probe is a primary factor in establishing their polarization properties. The feeds also provide excellent source-horn systems for tapered anechoic chambers, where their circular symmetry and decoupling of the fields from the absorber walls improve the often troublesome polarization characteristics of tapered chambers. Circularly polarized feeds are generally composed of four primary waveguide components: the orthomode transducer, quarter-wave polarizer, scalar ring horn, and circular waveguide step transformer. Linearly polarized feeds omit the quarter-wave polarizer. This paper discusses the design and performance of high-polarization-purity source feeds for evaluating the polarization properties of antennas under test. Circularly polarized feeds have been constructed which operate over 10- to 20-percent bandwidths from 1.5 to 70 GHz. Gain values are generally in the area of 12 to 18 dBi, with cross-polarization isolation in excess of 40 dB. Representative measured data are presented.

Remote thickness sensor
W.S. Arceneaux, November 1993

Applications that require tight tolerances on dielectric thickness control need accurate sensors. A technique has been developed that will allow for the measurement of thickness without requiring surface contact. High resolution radar imaging, commonly used in RCS measurements , is now being used to measure thickness. Electromagnetic fields reflected from the front and rear surface are detected and the time response delta is converted into thickness. A major advantage of this method is that it is not affected by varying sensor offset height.

Remote thickness sensor
W.S. Arceneaux, November 1993

Applications that require tight tolerances on dielectric thickness control need accurate sensors. A technique has been developed that will allow for the measurement of thickness without requiring surface contact. High resolution radar imaging, commonly used in RCS measurements , is now being used to measure thickness. Electromagnetic fields reflected from the front and rear surface are detected and the time response delta is converted into thickness. A major advantage of this method is that it is not affected by varying sensor offset height.

High-speed, pulsed antenna measurements using the Scientific-Atlanta Model 1795P
O.M. Caldwell, November 1993

Characterizing antennas under pulsed RF conditions has focused attention on a class of measurement challenges not normally encountered in CW measurements. The primary problems often include high transmit power, thermal management of the AUT, and a close interaction between the antenna and its transmitting circuitry. This paper presents instrumentation techniques for pulsed RF antenna measurements using the Scientific-Atlanta 1795P Pulsed Microwave Receiver as an example of a commercially available solution applicable to both active and passive apertures. Emphasis is given to measurement speed, dynamic range, linearity, single pulse versus multiple pulse measurements, pulse width, pulse repetition frequency (PRF), frequency coverage, system integration and automation, and suitability of equipment for antenna range applications.

High-speed, pulsed antenna measurements using the Scientific-Atlanta Model 1795P
O.M. Caldwell, November 1993

Characterizing antennas under pulsed RF conditions has focused attention on a class of measurement challenges not normally encountered in CW measurements. The primary problems often include high transmit power, thermal management of the AUT, and a close interaction between the antenna and its transmitting circuitry. This paper presents instrumentation techniques for pulsed RF antenna measurements using the Scientific-Atlanta 1795P Pulsed Microwave Receiver as an example of a commercially available solution applicable to both active and passive apertures. Emphasis is given to measurement speed, dynamic range, linearity, single pulse versus multiple pulse measurements, pulse width, pulse repetition frequency (PRF), frequency coverage, system integration and automation, and suitability of equipment for antenna range applications.

AIRSAR III air-to-air imaging system
R. Harris,B. Freburger, R. Redman, November 1993

This paper describes the significant upgrades to METRATEK's Model 100 AIRSAR Dynamic Imaging System since the earlier version was discussed at last year's conference. This system consists of three wideband radars mounted on a A-3 aircraft. It can generate diagnostic images airborne targets up to 200 feet in length and width. We will present examples and discussions of the solutions found to the many difficulties involved in generating high quality, high resolution, fully-calibrated SAR images of aircraft in flight from aircraft in flight. Data collection and processing hardware and software, as well as lessons learned from over 6 months of flight tests will also be described.

AIRSAR III air-to-air imaging system
R. Harris,B. Freburger, R. Redman, November 1993

This paper describes the significant upgrades to METRATEK's Model 100 AIRSAR Dynamic Imaging System since the earlier version was discussed at last year's conference. This system consists of three wideband radars mounted on a A-3 aircraft. It can generate diagnostic images airborne targets up to 200 feet in length and width. We will present examples and discussions of the solutions found to the many difficulties involved in generating high quality, high resolution, fully-calibrated SAR images of aircraft in flight from aircraft in flight. Data collection and processing hardware and software, as well as lessons learned from over 6 months of flight tests will also be described.

Automated test sequencer for high volume near-field measurements, An
G. Hindman,D. Slater, November 1993

Test sequencing flexibility and high throughput are essential ingredients to a state-of-the-art near-field test range. This paper will discuss methods used by NSI to aid the operator through the near-field measurement process. The paper will describe NSI's expert system and customer applications of a unique test and processing sequencer developed by NSI for optimizing range measurement activities. The sequencer provides powerful control of software functions including multiplexed measurements, data processing and unattended test operations.

Automated test sequencer for high volume near-field measurements, An
G. Hindman,D. Slater, November 1993

Test sequencing flexibility and high throughput are essential ingredients to a state-of-the-art near-field test range. This paper will discuss methods used by NSI to aid the operator through the near-field measurement process. The paper will describe NSI's expert system and customer applications of a unique test and processing sequencer developed by NSI for optimizing range measurement activities. The sequencer provides powerful control of software functions including multiplexed measurements, data processing and unattended test operations.

New antenna pattern recorder which reduces test time and provides advanced data management capabilities
A.R. Koster,D. Morehead, November 1993

As antennas have become more sophisticated, the testing requirements have grown tremendously. Testing often adds significantly to the cost of the system. A need has developed for test equipment more advanced than the completely manual systems of the past and less expensive than the completely automated systems of today. An antenna pattern recorder which helps to minimize test time is presented. The instrument utilizes a use friendly touch screen which facilitates user interaction with the unit. The pattern recorder is capable of measuring up to five channels of data simultaneously as a function of angle, linear position, or time. The data is stored on electronic media and may be saved, retrieved, zoomed, plotted, analyzed by internal programs or exported for analysis by external programs. The user may customize the plot format for test reports, proposal information, and other data requirements.

New antenna pattern recorder which reduces test time and provides advanced data management capabilities
A.R. Koster,D. Morehead, November 1993

As antennas have become more sophisticated, the testing requirements have grown tremendously. Testing often adds significantly to the cost of the system. A need has developed for test equipment more advanced than the completely manual systems of the past and less expensive than the completely automated systems of today. An antenna pattern recorder which helps to minimize test time is presented. The instrument utilizes a use friendly touch screen which facilitates user interaction with the unit. The pattern recorder is capable of measuring up to five channels of data simultaneously as a function of angle, linear position, or time. The data is stored on electronic media and may be saved, retrieved, zoomed, plotted, analyzed by internal programs or exported for analysis by external programs. The user may customize the plot format for test reports, proposal information, and other data requirements.

Low frequency RCS using the HP-8510
E. Ditata,C. Wegehenkel, November 1993

Northrop Corporation's Business and Advanced Systems Development Group has recently completed a very successful Radar Cross Section (RCS) measurements program on the USAF/Northrop B-2 bomber. One of the capabilities spawned from the program is a measurements radar system, comprised largely of off the shelf hardware, which provides high resolution whole body two-dimensional RCS images of large targets on the ground in the near field. Its high gain antennas allow operation in a space limited area and utilizes Synthetic Aperture Radar (SAR) data collection techniques. The system, though designed for use at VHF, has been expanded to operate from 100-2000 MHz in three bands. The hardware, associated signal processing, its applications and limitations are discussed.

Low frequency RCS using the HP-8510
E. Ditata,C. Wegehenkel, November 1993

Northrop Corporation's Business and Advanced Systems Development Group has recently completed a very successful Radar Cross Section (RCS) measurements program on the USAF/Northrop B-2 bomber. One of the capabilities spawned from the program is a measurements radar system, comprised largely of off the shelf hardware, which provides high resolution whole body two-dimensional RCS images of large targets on the ground in the near field. Its high gain antennas allow operation in a space limited area and utilizes Synthetic Aperture Radar (SAR) data collection techniques. The system, though designed for use at VHF, has been expanded to operate from 100-2000 MHz in three bands. The hardware, associated signal processing, its applications and limitations are discussed.

Portable RCS diagnostic system
R. Harris,B. Freburger, D. Maffei, R. Redman, November 1993

This paper describes the most recent version of the Model 200 portable RCS diagnostic radar. The Model 200 was designed to provide high-resolution RCS measurements in unprepared rooms indoors as well as on outdoor ranges. The system can provide real aperture measurements, ISAR measurements, or SAR measurements without changing system configuration.

Portable RCS diagnostic system
R. Harris,B. Freburger, D. Maffei, R. Redman, November 1993

This paper describes the most recent version of the Model 200 portable RCS diagnostic radar. The Model 200 was designed to provide high-resolution RCS measurements in unprepared rooms indoors as well as on outdoor ranges. The system can provide real aperture measurements, ISAR measurements, or SAR measurements without changing system configuration.

Ground-to-air RCS diagnostic system
R. Harris,A. Strasel, B. Freburger, C. Zappala, M. Lewis, R. Redman, November 1993

The initial phase of METRATEK's new Model 300 Radar System has been installed at the Navy's Chesapeake Tests Range (CTR) at Patuxent River, MD. This ground-to-air Multimode, Multifrequency Instrumentation Radar System (MMIRS) is a high-throughput frequency-and-polarization agile radar that is designed to drastically reduce the cost of measuring the radar cross section of airborne targets by allowing simultaneous measurements to be made at VHF through Ku Band.

Ground-to-air RCS diagnostic system
R. Harris,A. Strasel, B. Freburger, C. Zappala, M. Lewis, R. Redman, November 1993

The initial phase of METRATEK's new Model 300 Radar System has been installed at the Navy's Chesapeake Tests Range (CTR) at Patuxent River, MD. This ground-to-air Multimode, Multifrequency Instrumentation Radar System (MMIRS) is a high-throughput frequency-and-polarization agile radar that is designed to drastically reduce the cost of measuring the radar cross section of airborne targets by allowing simultaneous measurements to be made at VHF through Ku Band.

High duty instrumentation radar transmitters
F.A. Miller, November 1993

Today's requirements for dynamic Radar Cross Section (RCS) test data set new demands upon instrumentation Radar systems. Transmitters must deliver high power and operate at high data rates. Additionally, noise floor reduction of coherent spurious signals improves raw data and minimizes the need for manipulation of data.

High duty instrumentation radar transmitters
F.A. Miller, November 1993

Today's requirements for dynamic Radar Cross Section (RCS) test data set new demands upon instrumentation Radar systems. Transmitters must deliver high power and operate at high data rates. Additionally, noise floor reduction of coherent spurious signals improves raw data and minimizes the need for manipulation of data.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30