AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

What is RCS in an image?
G Fliss,D. Mensa, W. Nagy, November 1993

Extracting absolute RCS levels from radar images has become a prevalent practice, but is it valid? Scattering strengths associated with pixels in radar images are derived from responses of the target averaged over frequency and aspect angle. This paper presents theoretical and experimental data for simple and complex targets with frequency-and angle-dependent scattering to illustrate differences between results of narrowband and wideband RCS measurements.

RCS target non-contact position measurements
N. Panich,A. Trabelsi, I. Bryskin, M. Levin, M. Segal, M. Winebrand, November 1993

ORBIT's String Reel Target Manipulation System is used to support and rotate a target during RCS measurements. One of the challenges in this kind of RCS measurement is to accurately determine the position of the target in space, since the weight and moment of inertia of the target and the string flexibility do not allow measuring its position with conventional methods (linear encoder, etc.). In order to overcome this problem, the Non-Contact Optical Measurement System (NCOMS) has been developed and tested at ORBIT. The system provides the capability for precision tracking of the target position (X, Y, Z) and orientation (ROLL, PITCH, YAW). NCOMS is a computer-controlled system and operates by using two standard CCD cameras (stereo technique), as well as by use of a single camera with insignificant accuracy degradation. Another advantage of NCOMS is that the system operation does not require accurate camera positioning. The only requirements for CCD camera installation are target visibility and use convenience.

RCS target non-contact position measurements
N. Panich,A. Trabelsi, I. Bryskin, M. Levin, M. Segal, M. Winebrand, November 1993

ORBIT's String Reel Target Manipulation System is used to support and rotate a target during RCS measurements. One of the challenges in this kind of RCS measurement is to accurately determine the position of the target in space, since the weight and moment of inertia of the target and the string flexibility do not allow measuring its position with conventional methods (linear encoder, etc.). In order to overcome this problem, the Non-Contact Optical Measurement System (NCOMS) has been developed and tested at ORBIT. The system provides the capability for precision tracking of the target position (X, Y, Z) and orientation (ROLL, PITCH, YAW). NCOMS is a computer-controlled system and operates by using two standard CCD cameras (stereo technique), as well as by use of a single camera with insignificant accuracy degradation. Another advantage of NCOMS is that the system operation does not require accurate camera positioning. The only requirements for CCD camera installation are target visibility and use convenience.

Radar target measurements in multipath environment
Y.J. Stoyanov,M.A. Sekellick, W.H. Schuette, Y.J. Stoyanov, November 1993

The presence of the sea surface has a powerful influence on the scattering characteristics of marine targets during radar cross section (RCS) measurements. To obtain accurate RCS measurements of a large, distributed marine target, the radar site must satisfy various requirements. The major requirement is to provide quality RCS data without strong multipath distortion of the target return signal. In this paper multipath effects on a large scatterer measured at both low-and high-elevation radar sites are summarized. It is observed that multipath effects contribute strongly to the RCS of the target measured at a low elevation radar site. The data show large RCS fluctuations of more than 15 dB when a scatterer is measured at difference altitudes or ranges. The quality of the data measured at a low-elevation radar site then becomes questionable, which creates difficulties in assessing the true RCS of the target. For diagnostic purposes, it may be necessary to change the target range or altitude several times to make a credible assessment of RCS. The same target measured at a high-elevation site has less multipath influence on the RCS data, making assessment of the true RCS feasible.

Radar target measurements in multipath environment
Y.J. Stoyanov,M.A. Sekellick, W.H. Schuette, Y.J. Stoyanov, November 1993

The presence of the sea surface has a powerful influence on the scattering characteristics of marine targets during radar cross section (RCS) measurements. To obtain accurate RCS measurements of a large, distributed marine target, the radar site must satisfy various requirements. The major requirement is to provide quality RCS data without strong multipath distortion of the target return signal. In this paper multipath effects on a large scatterer measured at both low-and high-elevation radar sites are summarized. It is observed that multipath effects contribute strongly to the RCS of the target measured at a low elevation radar site. The data show large RCS fluctuations of more than 15 dB when a scatterer is measured at difference altitudes or ranges. The quality of the data measured at a low-elevation radar site then becomes questionable, which creates difficulties in assessing the true RCS of the target. For diagnostic purposes, it may be necessary to change the target range or altitude several times to make a credible assessment of RCS. The same target measured at a high-elevation site has less multipath influence on the RCS data, making assessment of the true RCS feasible.

Rotation of a string-suspended target in conical cuts
P.S.P. Wei,D.C. Bishop, November 1993

New results from numerical simulations and preliminary experiments pertaining to the dynamics of conical rotation of a string-suspended target are reported. For the simplest case of a model target suspended by three strings at three points, we find that its equilibrium position and the pitch, roll and yaw are uniquely dependent on its center of gravity (CG). By assuming that the yaw angle is mainly provided by the rotation of the upper turntable (UTT), we study the change in pitch and roll by controlling the strings while using a precision optical measurement system (POMS) to monitor the actual position and angular orientation of the target. In addition, two natural modes of small oscillations for the transverse and the longitudinal motions of the model target are observed to be of periods 1.45 and 2.46 seconds, respectively. The electrical-mechanical response time of the string-reel systems is found to be about 1.8 + 0.2 seconds. The results will be useful for the conics algorithm development.

Rotation of a string-suspended target in conical cuts
P.S.P. Wei,D.C. Bishop, November 1993

New results from numerical simulations and preliminary experiments pertaining to the dynamics of conical rotation of a string-suspended target are reported. For the simplest case of a model target suspended by three strings at three points, we find that its equilibrium position and the pitch, roll and yaw are uniquely dependent on its center of gravity (CG). By assuming that the yaw angle is mainly provided by the rotation of the upper turntable (UTT), we study the change in pitch and roll by controlling the strings while using a precision optical measurement system (POMS) to monitor the actual position and angular orientation of the target. In addition, two natural modes of small oscillations for the transverse and the longitudinal motions of the model target are observed to be of periods 1.45 and 2.46 seconds, respectively. The electrical-mechanical response time of the string-reel systems is found to be about 1.8 + 0.2 seconds. The results will be useful for the conics algorithm development.

Hughes Aircraft Company RCS/antenna measurement chamber characterization
A. Jain,C.R. Boerman, E. Walton, V.J. Vokurka, November 1993

The Hughes Aircraft Company Compact Range facility for antenna and RCS measurements, scheduled for completion in 1993, is described. The facility features two compact ranges. Chamber 1 was designed for a 4 to 6 foot quiet zone, and Chamber 2 was designed for a 10 to 14 foot quiet zone. Each chamber is TEMPEST shielded with 1/4 inch welded steel panels to meet NSA standard 65-6 for RF isolation greater than 100 dB up to 100 GHz, with personnel access through double inter locked Huntley RFI/EMI sliding pneumatic doors certified to maintain 100 dB isolation. While Chamber 1 is designed to operate in the frequency range from 2 to 100 GHz, Chamber 2 is designed for the 1 to 100 GHz region. Both RCS measurements and antenna field patterns/gain measurements can be made in each chamber. The reflectors used are the March Microwave Dual Parabolic Cylindrical Reflector System with the sub-reflector mounted on the ceiling to permit horizontal target cuts to be measured in the symmetrical plane of the reflector system.

High resolution SAR/ISAR air-to-air RCS imaging
D.A. Whelen,B.W. Ludwick, C.R. Boerman, D. Williams, R.G. Immell, November 1993

A recently completed Hughes program successfully demonstrated an airborne multi-spectral (VHF through X-Band) Synthetic Aperture Radar (SAR) measurement of the radar cross section (RCS) of an aircraft in flight, producing two-dimensional (2-D) diagnostic RCS images of the test aircraft. Ground-to-air imaging of full-scale aircraft was demonstrated by Hughes in 1990. In early 1992, a Hughes A-3 aircraft made air-to-air radar images of a test aircraft in flight. To date, Hughes has collected imagery on nine aircraft from VHF through X-Band, including nose, side and tail aspects at several elevation angles. Reference (2) describes the VHF/UHF capability of the imaging system and this paper will describe the image processing steps developed and will display S- and X-Band radar images with resolution as fine as 6 x 4 inches. The images presented in this paper are dominated by a few very large cavity-type scatterers and do not show the ultimate sensitivity and fidelity of the system. The air-to-air images do demonstrate the spectacular diagnostic utility of this technology.

High resolution SAR/ISAR air-to-air RCS imaging
D.A. Whelen,B.W. Ludwick, C.R. Boerman, D. Williams, R.G. Immell, November 1993

A recently completed Hughes program successfully demonstrated an airborne multi-spectral (VHF through X-Band) Synthetic Aperture Radar (SAR) measurement of the radar cross section (RCS) of an aircraft in flight, producing two-dimensional (2-D) diagnostic RCS images of the test aircraft. Ground-to-air imaging of full-scale aircraft was demonstrated by Hughes in 1990. In early 1992, a Hughes A-3 aircraft made air-to-air radar images of a test aircraft in flight. To date, Hughes has collected imagery on nine aircraft from VHF through X-Band, including nose, side and tail aspects at several elevation angles. Reference (2) describes the VHF/UHF capability of the imaging system and this paper will describe the image processing steps developed and will display S- and X-Band radar images with resolution as fine as 6 x 4 inches. The images presented in this paper are dominated by a few very large cavity-type scatterers and do not show the ultimate sensitivity and fidelity of the system. The air-to-air images do demonstrate the spectacular diagnostic utility of this technology.

Ultra wide band VHF/UHF air-to-air RCS imaging
D.A. Whelen,B.W. Ludwick, C.R. Boerman, D. Williams, R.G. Immell, November 1993

A recently completed Hughes program successfully demonstrated an airborne multi-spectral (VHF through X-Band) Synthetic Aperture Radar (SAR) measurement of the radar cross section (RCS) of an aircraft in flight, producing two-dimensional (2-D) diagnostic RCS images of the test aircraft. The Air-to-Air Radar Imaging Program was a multi-phase program to develop, demonstrate and exploit this new technology for the design and evaluation of advanced technology aircraft. Radar images with resolution as fine as 6 x 4 inches were produced. To date, Hughes has collected imagery on nine aircraft from VHE through X-Band, including nose, side and tail aspects at several elevation angles. The ability to generate a radar image while in flight is a significant technical achievement. The VHF images presented demonstrate the utility of the system but the images do not show the ultimate sensitivity and fidelity of the system because the aircraft presented in this paper are dominated by a few very large cavity-type scatterers. The ability to measure the VHF/UHS RCS of an aircraft in flight and to make high resolution images is one of the major accomplishments of this program. VHF/UHF in-flight images, never achieved before this program, are a powerful diagnostic tool for use in aircraft development.

Ultra wide band VHF/UHF air-to-air RCS imaging
D.A. Whelen,B.W. Ludwick, C.R. Boerman, D. Williams, R.G. Immell, November 1993

A recently completed Hughes program successfully demonstrated an airborne multi-spectral (VHF through X-Band) Synthetic Aperture Radar (SAR) measurement of the radar cross section (RCS) of an aircraft in flight, producing two-dimensional (2-D) diagnostic RCS images of the test aircraft. The Air-to-Air Radar Imaging Program was a multi-phase program to develop, demonstrate and exploit this new technology for the design and evaluation of advanced technology aircraft. Radar images with resolution as fine as 6 x 4 inches were produced. To date, Hughes has collected imagery on nine aircraft from VHE through X-Band, including nose, side and tail aspects at several elevation angles. The ability to generate a radar image while in flight is a significant technical achievement. The VHF images presented demonstrate the utility of the system but the images do not show the ultimate sensitivity and fidelity of the system because the aircraft presented in this paper are dominated by a few very large cavity-type scatterers. The ability to measure the VHF/UHS RCS of an aircraft in flight and to make high resolution images is one of the major accomplishments of this program. VHF/UHF in-flight images, never achieved before this program, are a powerful diagnostic tool for use in aircraft development.

Dynamic Radar Cross Section Measurements
James Tuttle, November 1993

Unique instrumentation is required for dynamic (in-flight) measurements of aircraft radar cross section (RCS), jammer-to-signal (J/S), or chaff signature. The resulting scintillation of the radar echo of a dynamic target requires special data collection and processing techniques to ensure the integrity of RCS measurements. Sufficient data in each resolution aspect cell is required for an accurate representation of the target's signature. Dynamic RCS instrumentation location, flight profiles, data sampling rates, and number of simultaneous measurements at different frequencies are important factors in determining flight time. The Chesapeake Test Range (CTR), NAVAIRWARCENACDIV, Patuxent River, Maryland, is a leader in quality dynamic in-flight RCS, J/S ratio, and chaff measurements of air vehicles. The facility is comprised of several integrated range facilities including range control, radar tracking, telemetry, data acquisition, and real-time data processing and display.

Modeling System Reflections To Quantify RCS Measurement Errors
Azar S. Ali, November 1993

RCS measurement accuracy is degraded by reflections occurring between the feed antenna, the range, and the radar subsystem. These reflections produce errors which appear in the image domain (both 1-D and 2-D). The errors are proportional to the RCS magnitude of the target under test and they are present in each of the typical range calibration measurements. Current 2-term error models do not predict or account for the above errors. An improved 8-term error model is developed to do so. The model is based on measurable reflections and losses within the range, the feed antenna, and the radar. By combining the improved error model with the commonly used 2-term RCS range calibration equation, we are able to quantify the residual RCS errors. The improved error model is validated with measured results on a direct illumination range and is used to develop specific techniques which can improve RCS measurement accuracy.

Algorithm for editing RFI from antenna measurements
R.B. Dybdal,G.M. Shaw, November 1993

Techniques for editing RFI from antenna measurements are developed for vector network analyzer instrumentation, and include the processing within the analyzer. An algorithm was devised for identifying data that may contain RFI; this algorithm is based on the electrical size of the antenna. Once data containing RFI are identified, extrapolation techniques based on the electrical size of the antenna are used to produce continuous data.

Algorithm for editing RFI from antenna measurements
R.B. Dybdal,G.M. Shaw, November 1993

Techniques for editing RFI from antenna measurements are developed for vector network analyzer instrumentation, and include the processing within the analyzer. An algorithm was devised for identifying data that may contain RFI; this algorithm is based on the electrical size of the antenna. Once data containing RFI are identified, extrapolation techniques based on the electrical size of the antenna are used to produce continuous data.

Contrast of VHF RCS measurement challenges indoor/outdoor, A
D. Craig,J. Matis, November 1993

This paper contrasts indoor and outdoor implementation of efforts during upgrades of VHR RCS measurement capabilities. Sites studied are two McDonnell Douglas Technologies Incorporated, Range Measurements Services facilities. Indoor. Radar Measurement Center (San Diego, CA) is a large compact range. Equipment-Harris Corporation Model 1630 Collimator System, Scientific Atlanta Model 2090 radar. Outdoor. Microwave test facility (Victorville, CA), large ground plane facility. Equipment-Steerable dipole feed dish, System Planning Corp, Mark III radar.

Contrast of VHF RCS measurement challenges indoor/outdoor, A
D. Craig,J. Matis, November 1993

This paper contrasts indoor and outdoor implementation of efforts during upgrades of VHR RCS measurement capabilities. Sites studied are two McDonnell Douglas Technologies Incorporated, Range Measurements Services facilities. Indoor. Radar Measurement Center (San Diego, CA) is a large compact range. Equipment-Harris Corporation Model 1630 Collimator System, Scientific Atlanta Model 2090 radar. Outdoor. Microwave test facility (Victorville, CA), large ground plane facility. Equipment-Steerable dipole feed dish, System Planning Corp, Mark III radar.

Validation measurements of reflector antenna strut lobes
R.C. Rudduck,J.Y. Wu, T-H. Lee, November 1993

The feed support struts often cause noticeable strut lobes in the patterns of reflector antennas. For example, strut lobes are apparent in the measured and calculated patterns presented in Ref. [1] for the 8-foot diameter reflector with a prime focus feed. As pointed out in [1], the calculated strut lobes are higher than the measured ones. The reason for the difference is secondary scattering by the oppositely located strut, which was not modeled in the calculated pattern in [1]. Detailed examination showed a difference of about 2 1/2 dB caused by the secondary scattering for this reflector antenna design. The purpose of this paper is to present measured and calculated patterns which explicitly demonstrate the quantitative effect of the secondary strut scattering. This effort is shown by comparing the measured strut lobe levels with the oppositely located strut removed, i.e., by using 3 struts instead of 4 struts. Calculated patterns are also given in which the secondary scattering is modeled.

Validation measurements of reflector antenna strut lobes
R.C. Rudduck,J.Y. Wu, T-H. Lee, November 1993

The feed support struts often cause noticeable strut lobes in the patterns of reflector antennas. For example, strut lobes are apparent in the measured and calculated patterns presented in Ref. [1] for the 8-foot diameter reflector with a prime focus feed. As pointed out in [1], the calculated strut lobes are higher than the measured ones. The reason for the difference is secondary scattering by the oppositely located strut, which was not modeled in the calculated pattern in [1]. Detailed examination showed a difference of about 2 1/2 dB caused by the secondary scattering for this reflector antenna design. The purpose of this paper is to present measured and calculated patterns which explicitly demonstrate the quantitative effect of the secondary strut scattering. This effort is shown by comparing the measured strut lobe levels with the oppositely located strut removed, i.e., by using 3 struts instead of 4 struts. Calculated patterns are also given in which the secondary scattering is modeled.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30