AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

Characterization of aeronautical antennas for INMARSAT communication
S. Mishra,J. Moraces, J. Smithson, J.G. Dumoulin, P. Charron, November 1993

Aeronautical SATCOM systems for INMARSAT typically employ circular polarized electronically or mechanically steered multi beam antennas. Characterization of thee antennas requires extensive measurements that differ from conventional antenna pattern measurements. Some of these are: A. Multiple frequently CP gain, axial ratio, and discrimination measurements over a hemisphere for a large number of beams. B. Noise temperature and G/T measurements C. Carrier to multipath rejection D. Intermodulation characteristics E. Receiver and Transmitter system characteristics Details of instrumentation and procedure for these tests are presented with special emphasis on issues such as measurement speed, accuracy and processing of large amounts of data.

Characterization of aeronautical antennas for INMARSAT communication
S. Mishra,J. Moraces, J. Smithson, J.G. Dumoulin, P. Charron, November 1993

Aeronautical SATCOM systems for INMARSAT typically employ circular polarized electronically or mechanically steered multi beam antennas. Characterization of thee antennas requires extensive measurements that differ from conventional antenna pattern measurements. Some of these are: A. Multiple frequently CP gain, axial ratio, and discrimination measurements over a hemisphere for a large number of beams. B. Noise temperature and G/T measurements C. Carrier to multipath rejection D. Intermodulation characteristics E. Receiver and Transmitter system characteristics Details of instrumentation and procedure for these tests are presented with special emphasis on issues such as measurement speed, accuracy and processing of large amounts of data.

Infrared imaging of electromagnetic radiation
P. Tornatta,R. Baltzer, November 1993

This paper discusses a new technology for viewing and measuring the power distribution of a propagating electromagnetic wave. A wave is passed through an absorbing material that absorbs only a small fraction of the energy; the wave is unchanged otherwise. The absorbed energy heats the material so that an engineer can view the power distribution with an infrared camera and get real-time feedback about design changes. Because the engineer is viewing the power distribution of the propagating wave in real-time, normal antenna design schedules are reduce. In agitation, the equipment used in the measurement technique is portable and can be easily calibrated in the field.

Infrared imaging of electromagnetic radiation
P. Tornatta,R. Baltzer, November 1993

This paper discusses a new technology for viewing and measuring the power distribution of a propagating electromagnetic wave. A wave is passed through an absorbing material that absorbs only a small fraction of the energy; the wave is unchanged otherwise. The absorbed energy heats the material so that an engineer can view the power distribution with an infrared camera and get real-time feedback about design changes. Because the engineer is viewing the power distribution of the propagating wave in real-time, normal antenna design schedules are reduce. In agitation, the equipment used in the measurement technique is portable and can be easily calibrated in the field.

Substitution and 3-antenna measurements of an 8-element VHF ocean-buoy antenna
D. Farina,J. Bull, R. Flam, November 1993

A description of antenna measurements performed on an ocean-buoy mounted antenna array is given. The array is designed to measure the E and H fields of a received wavefront at four different heights over the ocean. Four collocated electrically-small loop-dipole antenna pairs at 2 meter height spacings were integrated into a non-conducting buoy support structure. The frequency band was 50-250 MHz. Data was taken with both the Substitution (2-antenna) and 3 Antenna Measurement Methods for comparison purposes. The ground plane range that was used is described as well as the various range setups used to accumulate all of the required data.

Substitution and 3-antenna measurements of an 8-element VHF ocean-buoy antenna
D. Farina,J. Bull, R. Flam, November 1993

A description of antenna measurements performed on an ocean-buoy mounted antenna array is given. The array is designed to measure the E and H fields of a received wavefront at four different heights over the ocean. Four collocated electrically-small loop-dipole antenna pairs at 2 meter height spacings were integrated into a non-conducting buoy support structure. The frequency band was 50-250 MHz. Data was taken with both the Substitution (2-antenna) and 3 Antenna Measurement Methods for comparison purposes. The ground plane range that was used is described as well as the various range setups used to accumulate all of the required data.

Dual-frequency,dual-polarized millimeter wave antenna characterization
J.P. Kenney,D. Mooradd, E. Martin, L.D. Poles, November 1993

The radiation characteristics for a dual-frequency, dual-polarized millimeter wave antenna for a radar operating at 33 and 95-GHz were measured at the Ipswich Research Facility. On-pole and cross-pole radiation patterns were measured using the 2600 foot far field range. In this paper we'll discuss the general design of the antenna feed system and the instrumentation ensemble used to perform the far field characterization of this high performance large aperture dielectric lens antenna.

Dual-frequency,dual-polarized millimeter wave antenna characterization
J.P. Kenney,D. Mooradd, E. Martin, L.D. Poles, November 1993

The radiation characteristics for a dual-frequency, dual-polarized millimeter wave antenna for a radar operating at 33 and 95-GHz were measured at the Ipswich Research Facility. On-pole and cross-pole radiation patterns were measured using the 2600 foot far field range. In this paper we'll discuss the general design of the antenna feed system and the instrumentation ensemble used to perform the far field characterization of this high performance large aperture dielectric lens antenna.

Use of an infrared camera system in the analysis of phased array boresight errors, The
R.P. Gray,J.J. Kosch, November 1993

The use of electronically scanned phased array antennas in demanding rolls such as satellite communications and radar systems has led to an increasing desire to analyze the sources of error present in the boresight alignment of such systems. Not the least among these errors are those introduced by thermal effects on the various components which comprise the array structure. In an effort to understand this mechanism, this paper will discuss a technique which uses an infrared camera system to analyze the beam deflection errors caused by the effects of temperature gradients present in the antenna system.

Use of an infrared camera system in the analysis of phased array boresight errors, The
R.P. Gray,J.J. Kosch, November 1993

The use of electronically scanned phased array antennas in demanding rolls such as satellite communications and radar systems has led to an increasing desire to analyze the sources of error present in the boresight alignment of such systems. Not the least among these errors are those introduced by thermal effects on the various components which comprise the array structure. In an effort to understand this mechanism, this paper will discuss a technique which uses an infrared camera system to analyze the beam deflection errors caused by the effects of temperature gradients present in the antenna system.

Interpretation of near-field data for a phased array antenna
J. Friedel,R. Keyser, R.E. Johnson, November 1993

The LX/LH organization of McClellan AFB has been using near-field (NF) technology for the past two years to test an Air Force phased array receiving antenna. McClellan uses both a close range surface RF scanner and a larger offset, fain and back-transform near-field scanner. NF testing is done for both trouble-shooting purposes to support repair efforts, and for acceptance-testing to certify the antenna. The purpose of this paper is to show how McClellan interprets its planar near-field data for diagnosing antenna faults. First the various near-field techniques used by the LX/LH organization will be discussed. Following, will be an examination of the antenna defects pointed out by the NF test date. Failures will be traced to the component level where possible. Techniques other than near-field, such as electronic test, will be used to verify these problems. Additionally, the repair methods will be discussed.

Interpretation of near-field data for a phased array antenna
J. Friedel,R. Keyser, R.E. Johnson, November 1993

The LX/LH organization of McClellan AFB has been using near-field (NF) technology for the past two years to test an Air Force phased array receiving antenna. McClellan uses both a close range surface RF scanner and a larger offset, fain and back-transform near-field scanner. NF testing is done for both trouble-shooting purposes to support repair efforts, and for acceptance-testing to certify the antenna. The purpose of this paper is to show how McClellan interprets its planar near-field data for diagnosing antenna faults. First the various near-field techniques used by the LX/LH organization will be discussed. Following, will be an examination of the antenna defects pointed out by the NF test date. Failures will be traced to the component level where possible. Techniques other than near-field, such as electronic test, will be used to verify these problems. Additionally, the repair methods will be discussed.

Prediction of phased array antenna sidelobe performance based on element pattern statistics
H.M. Aumann,F.G. Willwerth, November 1993

Phased array antenna sidelobe levels are evaluated based on the statistics of the differences in element patterns. It is shown that the differences can be treated as random errors. The standard formula for predicting the average sidelobe level of an array due to random errors is valid if the interaction between the element patterns and the excitation function is taken into account. Sidelobes of a linear array with a variety of near-field perturbations are considered. The statistics indicate that for an N-element array, adaptive calibrations may lower the average sidelobe level by a factor of N.

Prediction of phased array antenna sidelobe performance based on element pattern statistics
H.M. Aumann,F.G. Willwerth, November 1993

Phased array antenna sidelobe levels are evaluated based on the statistics of the differences in element patterns. It is shown that the differences can be treated as random errors. The standard formula for predicting the average sidelobe level of an array due to random errors is valid if the interaction between the element patterns and the excitation function is taken into account. Sidelobes of a linear array with a variety of near-field perturbations are considered. The statistics indicate that for an N-element array, adaptive calibrations may lower the average sidelobe level by a factor of N.

Design of triad steering antenna arrays for the testing of monopulse antenna seeker systems
J. Land, November 1993

This paper deals with the development of an approach to the design of triad steering antenna arrays which are used in anechoic chambers for hardware-in-the-loop testing of monopulse antenna seeker systems. In the design of a large array, such as those used for hardware-in-the-loop of guided weapons, it is important to optimize the array element spacing. An excessively narrow spacing results in an unreasonable number of required antennas and increased cost, while an excessively wide spacing will induce angle measurement errors in the seeker under test which can be significant. The specific objective of this effort is to quantitatively describe the monopulse discriminant efforts which result when a non-planar field, radiated by an antenna triad, illuminates a monopulse seeker under test. The approach to this problem is to calculate the triad field at the aperture of the monopulse seeker assuming various levels of triad element phase and amplitude error. Using this illumination field and the illumination function of the monopulse antenna, the resulting sum and difference patterns are calculated along with the monopulse discriminant. Software has been developed to perform these calculations. The resulting patterns are compared with the ideal far field pattern and the discriminant bias, or angle measurement error, is quantified.

Design of triad steering antenna arrays for the testing of monopulse antenna seeker systems
J. Land, November 1993

This paper deals with the development of an approach to the design of triad steering antenna arrays which are used in anechoic chambers for hardware-in-the-loop testing of monopulse antenna seeker systems. In the design of a large array, such as those used for hardware-in-the-loop of guided weapons, it is important to optimize the array element spacing. An excessively narrow spacing results in an unreasonable number of required antennas and increased cost, while an excessively wide spacing will induce angle measurement errors in the seeker under test which can be significant. The specific objective of this effort is to quantitatively describe the monopulse discriminant efforts which result when a non-planar field, radiated by an antenna triad, illuminates a monopulse seeker under test. The approach to this problem is to calculate the triad field at the aperture of the monopulse seeker assuming various levels of triad element phase and amplitude error. Using this illumination field and the illumination function of the monopulse antenna, the resulting sum and difference patterns are calculated along with the monopulse discriminant. Software has been developed to perform these calculations. The resulting patterns are compared with the ideal far field pattern and the discriminant bias, or angle measurement error, is quantified.

Free space characterization of materials
D. Blackham, November 1993

A simple change to the HP8510C or HP8720C vector network analyzer block diagram coupled with the TRM (Thru Reflect Match) calibration leads to accurate measurements of the material properties of flat samples. Algorithms developed for transmission line measurements can also be used in free space measurements. A description of recent improvements in the transmission/reflection algorithms is reviewed. Free space measurement results based on the transmission/reflection algorithms found in the HP85071B materials measurement software package are presented.

Free space characterization of materials
D. Blackham, November 1993

A simple change to the HP8510C or HP8720C vector network analyzer block diagram coupled with the TRM (Thru Reflect Match) calibration leads to accurate measurements of the material properties of flat samples. Algorithms developed for transmission line measurements can also be used in free space measurements. A description of recent improvements in the transmission/reflection algorithms is reviewed. Free space measurement results based on the transmission/reflection algorithms found in the HP85071B materials measurement software package are presented.

Improved NRL arch technique for broad-band absorber performance evaluations
K. Liu,J. Wineman, J.M. Kilpela, November 1993

In this paper, a new error correction technique is introduced to improve the accuracy and efficiency of the traditional NRL Arch method. The use of this integrated technique allows one to correct the error terms in the traditional NRL arch setup so that a broadband evaluation of the performance of the absorber product can be performed with much better accuracy and efficiency. This technique also allows one to conduct large bistatic angle evaluation of absorbers without the cross talk and other error signal interferences. Design guidelines for a broadband NRL test arch are provided so as to successfully implement this improved NRL Arch method for a broadband evaluations of anechoic absorbers. Sample test results from Ray Proof's broadband test arch (0.5-6 GHz) are also presented.

Improved NRL arch technique for broad-band absorber performance evaluations
K. Liu,J. Wineman, J.M. Kilpela, November 1993

In this paper, a new error correction technique is introduced to improve the accuracy and efficiency of the traditional NRL Arch method. The use of this integrated technique allows one to correct the error terms in the traditional NRL arch setup so that a broadband evaluation of the performance of the absorber product can be performed with much better accuracy and efficiency. This technique also allows one to conduct large bistatic angle evaluation of absorbers without the cross talk and other error signal interferences. Design guidelines for a broadband NRL test arch are provided so as to successfully implement this improved NRL Arch method for a broadband evaluations of anechoic absorbers. Sample test results from Ray Proof's broadband test arch (0.5-6 GHz) are also presented.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30