AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

RCS

RCS Measurements of LO Features on a Test Body
J. Lutz,D. Mensa, K. Vaccaro, November 1999

The paper presents an example of the design process undertaken to determine the RCS response of LO features mounted on a test body. Although not unique, the example considers the various aspects which determine the accuracy of the final data in the design of the experiment and signal processing. The high quality of experimental results illustrate the potential of using an integrated approach in which the designs of the test body, the measurement process, the signal processing techniques, and validation of results are optimally applied to meet the objective not achievable by conventional means.

Wholebody RCS Estimates from Zone Measurements
G. Fliss,M. Blischke, November 1999

Operationally active hangers are not well suited for making wholebody RCS measurements for aircraft signature diagnostics. While it is much more feasible to make localized regional or zone measurements in a hanger, the utility of such data for determining overall signature growth has significant limitations. The most obvious limitation is not having all the information necessary to re-assemble the wholebody signature. In this paper we present some discussion and experimental results which explore the limiting factors associated with estimating an entire aircraft signature from localized regional (zone) measurements. An example will be shown where zonal measurement data is inserted into a reference image and then reconstructed to form two-dimensional frequency vs aspect angle RCS. It is shown that a precise coherent alignment of the zone image with the reference wholebody image is not necessary and that only a coarse incoherent alignment is needed if only RCS statistics are desired. This is an important finding which leads to conclusion that it is logistically feasible to make zonal measurements and reconstruct a wholebody RCS estimate for impact analysis.

MMW Instrumentation Systems for RCS Measurements & Applications
W.C. Parnell, November 1999

A variety of unique instrumentation radars have been developed by the RF & MMW Systems Division at Eglin Air Force Base in order to support both static and dynam ic Radar Cross Section (RCS) measurements for Smart Weapons Applications. These systems include an airborne multispectral instrumentation suite that was used to collect target signatures in various terrain and environmental conditions (95 GHz Radar Mapping System - 95RMS), a look-down tower based radar designed to perform RCS measurements on ground vehicles (MMW Instrumentation, High Resolution Imaging Radar System MIHRIRS), two high power (35 & 95 GHz) systems capable of mapping/measuring both attenuation and backscatter properties of Obscurants and Chaff (MMW Radar Obscurant Characterization System MROCS: 1&2), and a Materials Measurement System (MMS) which provides complex free space, bistatic attenuation and reflectivity data on Radar Absorbing Materials (RAM), paints, nets and specialized coatings/materials. This paper will describe the instrumentation systems, calibration procedures and measurement techniques used for data collection as well as several applications which support modelina and simulation activities in the Smart Weapon community.

Digital Receiver Technology for High-Speed Near-Field Antenna Measurements
D. Fooshe,D. Slater, November 1999

High-speed receivers for near-field antenna and RCS measurements have traditionally been one-of-a-kind, expensive, difficult to interface and lacking in software support. Advances in digital signal processing, computer technology and software development now provide the means to economically solve these problems. NSI offers a high speed receiver subsystem, the Panther 6000 series, that allows multiplexed beam and frequency measurements at a rate of 80,000 independent amplitude and phase measurement points per second. The Panther 6000 receiver directly digitizes the 20 MHz IF test and reference input channels, and includes a high speed beam controller (HSBC) to sequence the measurement process. The HSBC receives an input trigger to initiate a measurement sequence of user-defined frequencies and beam or pol states. NSI also offers a multi-channel all-digital receiver subsystem, the Panther 6500, to interface directly with Digital Beam Forming (DBF) antennas. The Panther 6500 allows up to 16 channels of l and Q digital input (16 bits each) with 90 dB dynamic range per channel. The all-digital DBF receiver reduces the cost, complexity and performance limitations associated with conventional instrumentation in DBF antenna measurement applications. All Panther series receivers are fully integrated with the NSI97 antenna measurement software and operate with existing microwave sources, mixers and IF distribution equipment.

MRC Compact Range Reflector System
W.R. Griffin, November 1999

Over the last ten years, MRC has designed, fabricated, and installed a number of compact range reflector systems. This paper presents such reflector programs illustrating a variety of alternatives for reflector composition. Such programs include the MRC Scattering Measurements Lab (SML), the Air Force Research Lab's Advanced RCS Measurements Range (ARMR), Honeywell's Antenna Measurements Range, the new GE/NT Compact Range, and the new TRW Compact Antenna Test Range. Variations within these programs include single or dual-reflector configurations, single piece to panelized designs, and all composite to all aluminum construction. All approaches present excellent alternatives for various compact range needs.

524 GHz Polarimetric Compact Range for Scale Model RCS Measurements, A
M.J. Coulombe,G. Szatkowski, J. Waldman, T. Horgan, W. Nixon, November 1999

A fully-polarimetric compact range operating at 524 GHz has been developed for obtaining Ka-band RCS measurements on 1:16th scale model targets. The transceiver consists of a fast switching, stepped, C W , X-band synthesizer driving dual X 4 8 transmitmultiplier chains and dual X 4 8 local oscillator multiplier chains. Software range-gating is used to reject unwanted spurious responses in the compact range. A motorized target positioning system allows for fully automated sequencing of calibration and target measurements over a desired set of target aspect and depression angles. A flat disk and a dihedral at two seam orientations are used for both polarization and R C S calibration. Cross-polarization rejection ratios of better than 45 d B are routinely achieved. The compact range reflector consists of a 1.5m diameter aluminum reflector fed from the side to produce a 0. 5 m diameter quiet zone. Targets are measured in free-space or on a variety of ground planes designed to model most typical grou nd surfaces. A description of this 524 GHz compact range along with 30 ISA R measurement examples are presented in this paper.

RATSCAT Technical Enhancements and Upgrades
J.H. Eggleston,G.V. Jones, S.J. Gray, November 1999

RATSCAT has pursued a wide gamut of technical enhancements and upgrades to its Mainsite and RATSCAT Advanced Measurement System (RAMS) locations. Acquisition of three radar systems has provided RATSCAT with the most capable radar systems available. RAMS is capable of acquiring full scattering matrix (FSM) data from 120 MHz to 36 GHz. Mainsite is capable of acquiring bistatic FSM data from 2 GHz to 18 GHz and monostatic FSM data from 1 GHz to 36 GHz. RATSCAT is pursuing unparalleled background levels through the acquisition of new pylon technology at RAMS and is expanding its target handling capability via construction of additional target storage as well as the addition of a mobile target handling shelter and new 50' and 14' pylons at Mainsite. RATSCAT has acquired a full feature data processing capability at both sites that uses a reflective memory interface between data acquisition and data processing resulting in faster validation of data cuts. Through acquisition programs and partnership with industry RATSCAT has improved their RCS test capability to become the technical leader in outdoor static RCS testing.

Boeing Near-Field Test Facility (NFTF) Upgrades & Design Tradeoffs
P.J. DeGroot,M. Westerhold, November 1999

The Boeing Near Field Test Facility (NFTF) in St. Louis, MO was constructed in 1991 to conduct near field RCS measurements of production parts, models, and full-scale operational aircraft. Facility upgrades were identified in 1997 to support operational aircraft testing, such as the F/A-18 E/F. Target rotation mechanization, measurement antennas, and the test radar were identified as requiring upgrades. The target rotation hardware was upgraded to a 40-foot diameter turntable capable of handling production fighter aircraft. Antennas were mounted in an elevation box, which also contains the radar and an absorber aperture. The elevation box translates vertically, and pitches in elevation for different view angles. A new Lintek Elan radar, with a frequency range of 2ml8 GHz, 200 Watt Traveling Wave Tube (TWT) amplifiers, and Programmable Multi-Axis Controller cards (PMAC), controls all motion in the facility. In addition, modifications to the facility were completed to improve efficiency and ergonomics.

Advanced Antenna and RCS Measurement Software
L.G.T. Van de Coevering,V.J. Vokurka, November 1999

ARCS acquisition software for antenna and RCS measurements has been modified such that it is now based on LabWindows/CVI of National Instruments. With open system architecture, industry-standard tools and platform flexibility, new ARCS software delivers all components which are required for an advanced antenna and RCS measurement system. This means tht the portability and modularity of the software is increased considerably. Such a concept has the major advantage of simple adaptation/modification by the user, for instance by adding new menu pages. The virtual instrument concept of CVI guarantees easy adaptation of the newest interface technology, such as USB and firewire. Furthermore, there is a large base of instrument drivers which can be readily used to extend the measurement capabilities of ARCS in a minimum of time Special care is taken in the design of the user interface. This is to avoid complex procedu res for entering measurement parameters. Even less experienced operators must be comfortable with the software and be able to perform complex calibration and data acquisition procedures. Finally, a large number of application programs is written for advanced antenna and RCS calibration, microwave holography, ISAR imaging and frequency extrapolation techniques.

Linear-SAR versus Circular-SAR for Flight-Line RCS Measurements
G.G. Fliss,J.W. Burns, November 1998

Over the past few years several flightline RCS measurement systems have been developed. Some of these systems use a linear rail to collect aspect angle data and other systems use no rails or "free path" circular collections. A comparison of these two different collection methods have never been publicly presented. In this paper, a discussion of the differences between the Linear-SAR and Circular-SAR collection methodologies will be presented. Specifically, issues associated with field quality, nearfield effects, and processing requirements will be covered in the discussion. Linear-SAR has the advantage of being more easily controlled and therefore not requiring motion compensation. Linear-SAR systems generally do not have mechanisms to point the antenna toward the target, thus limiting the angle extent of the collection aperture. In contrast, the Circular-SAR can theoretically collect data 360 degrees around the target at a constant range. However, the free-path Circular­SAR requires some form of motion compensation of the data for image formation processing.

RCS Data Improvement Using Two-Dimensional Parametric Signal History Editing (PSHE)
B.E. Fischer,J.W. Burns, November 1998

Target support and clutter contamination can be a limiting factor in radar cross section (RCS) measurements of signature­ controlled targets. Conventional ISAR image editing methods can be used to remove contamination, but their performance degrades rapidly when the available resolution is insufficient to identify and separate the support returns from those of the target. ERIM International, Inc. (EI) has developed and successfully demonstrated data post-processing techniques based on 1-D parametric spectral estimators for removing additive contamination from low resolution swept frequency measurements [1, 2]. To further enhance performance and take advantage of the cross-range resolution afforded by target aspect information, EI has investigated the use of coherent 2-D spectral estimation techniques for improved identification and mitigation of measurement contamination in frequency and angle diverse data. In particular, parametric signal history editing (PSHE) algorithms based on 2-D TLS-Prony [3] and 2-D MEMP [4] have been developed and exercised on numerical simulations and measured data. The paper demonstrates 2-D spectral estimation in representative measurement situations, identifies strengths and limitations, and quantifies mitigation algorithm performance. In addition, automated filtering of spectral representations using energy level ordering, Cramer Rao Bounds (CRBs), and spatial filtering are discussed.

Mitigation of Target Illumination and Multipath Errors in Ground Plane RCS Measurements
J.F. Stach,J.W. Burns, November 1998

The close proximity of the ground to the radar antenna and the target under test is often hard to avoid at an outdoor RCS measurement range. Ground reflection of energy from the antenna leads to target illumination errors, and target-ground interactions lead to multipath errors. By proper positioning of the antenna and target, ground reflections of the antenna illumination can be exploited to increase overall system sensitivity by concentrating more energy on the target; however, this is only effectivefor narrowband measurements over a limited target region [1]. Reducing target-ground interactions by increasing the target height above the ground generally has limits due to mechanical restrictions on both the radar antennas and the target. This paper will present a model-based data post-processing technique to mitigate illumination errors and target-ground interactions in ground plane range RCS measurements. The algorithm is an extension of the network model multipath mitigation technique previously developed for indoor RCS measurement ranges [2,3,4]. The technique will be described and demonstrated using a numerical simulation of the RCS measurement of a canonical target over a ground plane.

Radar Cross Section (RCS) Range Enhancements at Eglin's Seeker Test & Evaluation Facility (STEF)
W.C. Parnell, November 1998

The Seeker Test and Evaluation Facility (STEF) located on Range C-52A at Eglin AFB FL. is used to perform high-resolution multispectral (EO-IR-RF-MMW) signature measurements of US and foreign ground vehicles primarily to support the Research, Development, Test and Evaluation (RDT&E) of smart weapons (seekers, sensors and Countermeasure techniques). In order to support two major DOD signature measurement programs in 1997 this facility required significant range upgrades and enhancements to realize reduced background levels, increase measurement accuracy and improve radar system reliability. These modifications include the addition of a 350'X 120' asphalt ground plane, a new secure target support facility, a redesigned low RCS shroud for the target turntable and a new core radar system (Lintek elan) and data acquisition/analysis capability for the existing radars Millimeter-Wave Instrumentation, High Resolution, Imaging Radar System - MIHRIRS). This paper describes the performance increase gained as a result of this effort and provides information on site characterization and radar instrumentation improvements as well as examples of measured RCS of typical ground vehicle signatures and ISAR imagery

Physics Based Modeling of Target Signatures
J. Berrie,B. Welsh, G. Wilson, H. Chizever, November 1998

The scattered field from an arbitrary target may include a variety of scattering mechanisms such as specular and diffraction terms, creeping waves and resonant phenomena. In addition, buried within such data are target-mount interactions and clutter terms associated with the test environment. This research presents a method for decomposing a broadband complex signal into its constituent mechanisms. The method makes use of basis functions (words) which best describe the physics of the scattered fields. The MUSIC algorithm is used to estimate the time delay of each word. A constrained optimization refines the estimate and determines the energy for each. The method is tested using two far-field radar cross section (RCS) measurements. The first example identifies target­mount interactions for a common calibration sphere. The second example applies the method to a low observable (LO) ogive target.

Dielectric Column Backscatter Due to Mechanical Deformation
V. Saavedra, November 1998

Low dielectric permittivity columns are often used in RCS measurements to support targets. Electromagnetic and mechanical interactions between target and mast occur and subtraction cannot eliminate them. In this paper we will study mechanical phenomena such as bending and compression (up to buckling) under load and we will calculate the dielectric mast backscattering level owing to these two deformations. It appears that compression effects are usually negligible compared to bending effects. Finally, we will propose some rules on mast design. More specifically, a cubic section can perform the support of the targets and so decrease the spurious backscattering.

Full Polarimetric Calibration for RCS Measurement Ranges: Performance Analysis and Measurement Results
B.M. Welsh,A.L. Buterbaugh, B.M. Kent, L.A. Muth, November 1998

Full polarimetric scattering measurements are increasingly being required for radar cross-section (RCS) tests. Conventional co-and cross-polarization calibrations fail to take into account the small amount of antenna cross-polarization that will be present for any practical antenna. In contrast, full polarimetric calibrations take into account and compensate for the cross-polarization the calibration process. We present a full polarimetric calibration procedure and a simulation-based performance study quantifying how well the procedure improves measurement accuracy over conventional independent channel calibration.

Results from Inter-Laboratory Comparison Measurements at the Boeing 9-77 Range
M.D. Bushbeck,A.W. Reed, C.N. Eriksen, P.S.P. Wei, November 1998

Recently, RCS measurements were made of several common calibration objects of various sizes in the Boeing 9-77 Range. A study was conducted to examine the accuracy and errors induced by using each as a calibration target with a string support system. This paper presents the results of the study. Two of the objects, i.e., the 14"-ultrasphere and the 4.5"-dia. cylinder, are found to perform the best in that they exhibit the least departures (error) from theory. The measured departures of 0.2 to 0.3 dB are consistent with the temporal drift of the radar in several hours.

Full Scattering Matrix Calibration with Error Analysis
R.J. Jost,R.F. Fahlsing, November 1998

Calibration of monostatic radar cross section (RCS) has been studied extensively over many years, leading to many approaches, with varying degrees of success. To this day, there is still significant debate over how it should be done. It is almost a certainty, that if someone proposes a way to calibrate RCS data, someone else will come up with reasons as to why the "new" approach will not yield results that are "good enough." In the case of full scattering matrix RCS measurements, the lack of information concerning calibration techniques is even greater. The Air Force's Radar Target Scattering Facility (RATSCAT) at Holloman AFB, NM,has begun an effort to refine monostatic and bistatic cross polarization measurements at various radar bands. For the purposes of this paper, we have concentrated on our monostatic cross polarization developments. Such issues as calibration targets and techniques, system stability requirements, etc. will be discussed. During several programs we have attempted to collect sufficient data to do full scattering matrix corrections. In a previous paper, "Bistatic Cross-Polarization Calibration," our collected data had a high background which obscured much of the cross polarized return. The data presented here is from a program conducted at RATSCAT recently which utilized the Ka band. Because of the sensitivity of measurements at Ka to many effects, an error estimate was required. This paper presents this error estimation and some results of full scattering matrix correction of RCS data. This analysis is based upon "The Proposed Uncertainty Analysis for RCS Measurements", NISTIR 5019, by R. C. Wittmann, M. H. Francis, L. A. Muth and R. L. Lewis. This paper was aimed at principle pole measurements, e.g. HH and VV. The tabular data presented in the paper are from this paper with additions for errors associated with cross polarization and cross polarization correction.

Study of Wires and Strings of Finite Sizes
P.S.P. Wei,A.W. Reed, E.F. Knott, November 1998

Recent results from RCS measurements on metal wires, rods and dielectric strings are presented. For a cylinder at broadside to the incident wave, theoretical from 3D formulas converted from 2D exact solutions are used for comparisons with the experiments. The lone-of-sight orientation dependence is described by the polarimetric scattering matrix. Several types of interference effects are analyzed. Of particular interest is finding the suitable objects for the cross-polarized calibrations over a wide frequency range. Details from a 36" wire of radius 0.01" for calibrations in the VHF range are described. While the wire is supported by fine fishing lines, mitigation of the unwanted string echoes is important.

Analytical Error Model for Propagating RCS Measurement Uncertainties, An
I.J. LaHaie,B.E. Fischer, T.W. Conn, November 1998

In the last few years, a change has occurred in the RCS metrologist concerns for error analysis and the quantification of measurement uncertainty. The specific methods for range characterization and uncertainty estimation are the topics of many passionate technical discussions. While no single treatment can please everyone, most agree a measurement uncertainty program is critical to the understanding of measurement quality, the development of error reduction strategies, and to the planning of range improvement paths. We present the statistical case for the natural grouping of errors into multiplicative and additive classes. We will derive the two cases where one class dominates as presented by LaHaie [1], and then expand the analysis to include the general case of competing classes. We summarize the role and applicability of this method in estimating measurement quality and discuss how this procedure offers a logical and comprehensive error propagation solution to both top-down and bottom-up range characterization approaches.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31