AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

RCS

A 160 GHz polarimetric compact range for scale model RCS measurements
M.J. Coulombe (University of Massachusetts Lowell),J. Neilson (U.S. Army National Ground Intelligence Center), J. Waldman (University of Massachusetts Lowell), S. Carter (U.S. Army National Ground Intelligence Center), T. Horgan (University of Massachusetts Lowell), W. Nixon (U.S. Army National Ground Intelligence Center), November 1996

A fully-polarimetric compact range operating at 160 GHz has been developed for obtaining X-band RCS measurements on 1:16th scale model targets. The transceiver consists of a fast switching, stepped, CW, X-band synthesizer driving dual X16 transmit multiplier chains and dual X16 local oscillator multiplier chains. The system alternately transmits horizontal (H) and vertical (V) radiation while simultaneously receiving H and V. Software range-gating is used to reject unwanted spurious responses in the compact range. A flat disk and a rotating circular dihedral are used for polarimetric as well as RCS calibration. Cross-pol rejection ratios of better than 40 dB are routinely achieved. The compact range reflector consists of a 60” diameter, CNC machined aluminum mirror fed from the side to produce a clean 20” quiet zone. A description of this 160 GHz compact range along with measurement examples are presented in this paper.

Radar cross section range characterization
L.A. Muth (National Institute of Standards and Technology),B. Kent (Wright-Patterson Air Force Base), J. Tuttle (Naval Air Warfare Center) R.C. Wittmann (National Institute of Standards and Technology), November 1996

Radar cross section (RCS) range characterization and certification are essential to improve the quality and accuracy of RCS measurements by establishing consistent standards and practices throughout the RCS industry. Comprehensive characterization and certification programs (to be recommended as standards) are being developed at the National Institute of Standards and Technology (NIST) together with the Government Radar Cross Section Measurement Working Group (RCSMWG). We discuss in detail the long term technical program and the well-defined technical criteria intended to ensure RCS measurement integrity. The determination of significant sources of errors, and a quantitative assessment of their impact on measurement uncertainty is emphasized. We briefly describe ongoing technical work and present some results in the areas of system integrity checks, dynamic and static sphere calibrations, noise and clutter reduction in polarimetric calibrations, quiet-zone evaluation and overall uncertainty analysis of RCS measurement systems.

Radar target scatter (RATSCAT) division low frequency range characterization
M. Husar (Air Force Development Test Center),F. Sokolowski (Johnson Controls World Services, Inc.), November 1996

The RATSCAT Radar Cross Section (RCS) measurement facility at Holloman AFB, NM is working to satisfy DoD and program office desires for certifies RCS data. The first step is to characterize the Low Frequency portion of the RATSCAT Mainsite Integrated Radar Measurement System (IRMS). This step is critical to identifying error budgets, background levels, and calibration procedures to support various test programs with certified data. This paper addresses characterization results in the 150 – 250 MHz frequency range. System noise, clutter, background and generic target measurements are presented and discussed. The use of background subtraction on an outdoor range is reviewed and results are presented. Computer predictions of generic targets are used to help determine measurement accuracy.

Accuracy of RCS measurements
S. Mishra (Canadian Space Agency),C.W. Trueman (Concordia University), November 1996

Some precautions necessary for accurate RCS measurements using a short model range are discussed. Sources of error in these measurements such as non ideal range geometry, misalignment of the target and inappropriate time domain gating are discussed. A simple technique to estimate possible errors in RCS measurements due to factors such as bistatic angle due to finite separation of source and receive horns and finite length of the measurement range, is presented. The range of RCS values that can be measured within defined error bonds is identified.

A Top-down versus bottom-up RCS range certification approach
W.D. Burnside (The Ohio State University ElectroScience Laboratory),E. Walton (The Ohio State University ElectroScience Laboratory), I.J. Gupta (The Ohio State University ElectroScience Laboratory), J.D. Young (The Ohio State University ElectroScience Laboratory), November 1996

A new approach for certification of RCS ranges is discussed. This new approach is based on evaluating the major expected sources of errors in a RCS range rather than evaluating each and every error source and then defining the error bar for a given RCS measurement. The new approach is, therefore, called a top-down approach. Based on our experience with many indoor RCS ranges, we can say that the main sources of errors in RCS measurements are range related. (stray signals, chamber drift, target/mount interactions etc.) One should, therefore, critically evaluate these errors such that the performance level of the range can be verified. A test approach is defined to characterize the range related errors. Various tests are based on the RCS measurement of specific targets, and thus, can be easily performed using standard RCS measurement procedure. This approach will provide range operators with the needed information to justify the use of their range to measure RCS of a given target. Also, one can spend more effort fixing the error sources which lead to large RCS measurement errors.

Acceptance of the Sanders Merrimack 23 compact range for RCS measurements
E.A. Urbanik (Sanders, A Lockheed Martin Company),G. Boilard (Sanders, A Lockheed Martin Company), November 1996

In 1993, we presented the newly completed compact range and tapered chamber facility [1]. As part of this presentation, the issue of “range certification” was presented. This paper will discuss the work that we have done with the compact range for radar cross section (RCS) measurement acceptance. For customer acceptance, we had to “prove” that the compact range made acceptable measurements for the fixtures and apertures involved. Schedule and funding did not permit the full exploitation of the uncertainty analysis of the chambers, not was it felt to be necessary [2]. The determination of our range capabilities and accuracy was based on system parameters and target measurements. Targets that were calculable either in closed form solutions (spheres) or by numerical methods (cylinders and rods) were used. Finally, range to range comparisons with the Rye Canyon Facility [3] of a standard target was used. The range to range comparison proved especially difficult due to customer exceptions, feed differences, and target mounting. This paper will discuss the “success” criteria applied, the procedures used, and the results. The paper will close with a discuss of RCS standards and the range certification process.

Enhanced image editing by peak region segmentation
J. Stach (ERIM),E. LeBaron (ERIM), November 1996

For the past seven years, ERIM has been studying RCS measurement error sources and processing methods by which these errors can be reduced. Image editing is an extension of range-gating where scattering measurements are improved by removing undesired scattering phenomena in the range-crossrange image domain. Conventional image editing methods rely on a user-supplied polygon to segment an image into desired and undesired scattering regions. However, the polygon method suffers from variability due to user and display characteristics, provides little hope for automation, and cannot be easily extended beyond two dimensions. An alterative approach based on peak region segmentation minimizes or eliminates these limitations and adds an element of optimally that can also improve the performance of image editing techniques. In this paper, we will discuss the application of peak region segmentation to the image editing problem and show examples that demonstrate some of the advantages of this approach.

Parametric signal history editing techniques for removal of additive support contamination in narrowband RCS measurements
J. Burns (Environmental Institute of Michigan),S.R. DeGraaf (Electronic Sensors and Systems Division), November 1996

ERIM has developed techniques, based on parametric spectral estimators, for removing additive target support contamination from narrowband RCS measurements [1]. These techniques allow target and support returns to be extracted from frequency sweep data with much greater accuracy and resolution than that afforded by conventional Fourier techniques. These algorithms have recently been enhanced to incorporate scattering mechanism frequency dependence in the underlying signal model. Specifically, damped exponential and power-of-frequency sweep data with much greater accuracy and resolution than that afforded by conventional Fourier techniques. These algorithms have recently been enhanced to incorporate scattering mechanism frequency dependence in the underlying signal model. Specifically, damped exponential and power-of-frequency signal models have been used. The modification substantially improves algorithm performance in measurement situations where there is small absolute bandwidth, but relatively large fractional bandwidth, which can lead to appreciable variation in scattering mechanism amplitude. The paper will demonstrate the technique’s ability to remove target support contamination using numerical simulations and compact range measurements of canonical targets mounted on pylon supports. It will be shown that the algorithm can remove the additive pylon contamination even for situations where the pylon return dominates the target return and cannot be resolved from the target in conventional Fourier range profiles.

Evaluation of a CPTR using an RCS flat plate method
M.A.J. van de Griendt (Eindhoven University of Technology),V.J. Vokurka (Eindhoven University of Technology) J. Reddy (European Space Agency) J. Lemanczyk (European Space Agency), November 1996

Compact Payload Test Ranges (CPTR) for test zones of 5 meters or larger can be used for both payload and advanced antenna testing. In both cases accurate calibration, including amplitude and phase characteristics across the test zone, is required. Accurate data analysis is needed in order to establish corresponding error budgets. In addition, boresight determination will be required in both measurement types for most applications. Since it may be difficult or even impossible to scan the test zone field using a (planar) scanner, application of a large reference target (a rectangular or circular flat plate) can be seen as in interesting alternative. RCS measurements are then performed and test-zone field characteristics are determined in both amplitude and phase. Time- and spectral domain techniques can provide valuable information as to the location of possible disturbances. The evaluations is complemented with the measurement of a VAlidation STandard (VAST) antenna in combinations with an advanced APC technique. These techniques have been demonstrated at the CPTR at ESTEC, Noordwijk, the Netherlands. Results and practical considerations are presented in this paper.

On reducing primary calibration errors in radar cross section measurements
H. Chizever (Mission Research Corporation),Russell J. Soerens (Mission Research Corporation) Brian M. Kent (Wright Laboratory), November 1996

To accurately measure static or dynamic Radar Cross Section (RCS), one must use precise measurement equipment and test procedures. Recently, several DoD RCS ranges, including the Advanced Compact RCS Measurement Range at Wright-Patterson AFB, established procedures to estimate measurement error. Working cooperatively with the National Institute of Standards and Technology (NIST), Wright Laboratory established a baseline error budget methodology in 1994. As insight was gained from the error budget process, we noted that many common RCS measurement calibration techniques are subject to a wide variety of potential error sources. This paper examines two common so-polarized calibration devices (sphere and squat cylinder), and discussed techniques for evaluating calibration induced errors. A rigorous “double calibration” methodology is offered to track calibration measurement error. These techniques should offer range owners fairly simple methods to monitor the quality of their primary calibration standards at all times.

Time and direction of arrival estimation of stray signals in a RCS/antenna range
I.J. Gupta (The Ohio State University ElectroScience Laboratory),E. Walton (The Ohio State University ElectroScience Laboratory), W.D. Burnside (The Ohio State University ElectroScience Laboratory), November 1996

A method to generate time and direction of arrival (TADOA) spectra of the quiet zone fields of a RCS/ antenna range is presented. The TADOA spectra is useful for locating the stray signal sources in the RCS/ antenna range. To generate the TADOA spectra, quiet zone fields along a linear scan over the desired frequency band are probed. The probed data are calibrated to remove the magnitude and non-linear phase variation versus frequency. A calibration technique is also proposed in the paper. The TADOA spectra for simulated probed data as well as experimental probed data are shown.

Dynamic ground-to-air radar imagery
D. Fleisch (Aeroflex Lintek Corp.),A. Moghaddar (Aeroflex Lintek Corp.), November 1996

Dynamic ground-to-air measurement of aircraft RCS has several advantages over static measurements. The target may be measured in flight configuration and the support pylon is eliminated. Although dynamic RCS imagery has been performed since the late 1970s, the cost and complexity of such measurements have limited their utility for routine testing. In this paper, an easily deployable ground-to-air radar imaging system developed by Aeroflex Lintek is presented. This system forms images of aircraft in straight flight, requiring no on-board instrumentation or special pilot training. The radar system, flight profiles, and processing tools required for generating images of aircraft in flight are presented, along with examples of measured target data.

Converting an RCS range for satellite antenna measurements
J. Way, November 1995

The Hughes Space and Communications Company (HSC) has recently undertaken the task to modify a RCS range once operated by Hughes Radar and Communications Systems, to accommodate the testing of Satellite Antennas. This measurement facility's configuration, design and current status will be discussed herein. This RCS range is located in El Segundo, California.

RFI measurement system for field sites, An
R.B. Dybdal,G.M. Shaw, T.T. Mori, November 1995

A portable system for measuring the RF environment at remote sites is described. A frequency range between 500 MHz and 18 GHz is covered by this system. The design, calibration and use of this system are discussed.

3-D low frequency radar target imaging
M.J. Gerry,E. Walton, November 1995

The imaging of radar targets is typically accom­ plished by measuring the radar cross section (RCS) of the target as a function of frequency and az­ imuth angle. We measure a third dimension of the RCS by tilting the target and collecting data for conical cuts of the RCS pattern. This third dimension of data provides the ability to estimate the three-dimensional location of scattering centers on the target. Three algorithms are developed in order to process the three-dimensional RCS data.

Converting an RCS range for satellite antenna measurements
J. Way, November 1995

The Hughes Space and Communications Company (HSC) has recently undertaken the task to modify a RCS range once operated by Hughes Radar and Communications Systems, to accommodate the testing of Satellite Antennas. This measurement facility's configuration, design and current status will be discussed herein. This RCS range is located in El Segundo, California.

Near-field/far-field transformation
E. Lebreton,J.R. Levrel, November 1995

RCS data measured under near-field conditions is corrected to the far-field. The algorithm uses the HUYGEN's principle approach. The processing technique is describes and validates using anechoic chamber data and simulations taken on flat plate target at a distance from the radar R << 2D2/A, where D is the target cross range extend and A the wavelength. Good agreement with the theoretically predicted far-field RCS patterns is obtained.

Applicability of rapid near-field techniques and SAF numerical approach to bistatic RCS measurements
P. Garreau,B. Cown, F. Gallet, J. Garat, J.C. Bolomey, P. Baudon, November 1995

The application of rapid near-field measurement systems based on the Modulated Scattering Technique (MST) and Spherical Angular Function (SAF) data processing of the measured data to extract far-zone RCS of complex targets is discussed in this paper. A first-generation Spherical near-field measurement system for efficiently determining bistatic RCS is presented.

Single pivot antenna positioners
O.D. Asbell,H.P. Cotten, November 1995

Antenna positioners using a single pivot joint and two linear actuators are attractive for applications requiring limited two-axis motion. Such applications include antenna and RCS measurement systems, and scanning antennas. Minimum swing clearance is required. Positioners can be light, compact and stiff. Position feedback can be independent and linear for both axes. Design and selection considerations are presented. Two examples are described

Polarimetric calibration of reciprocal-antenna radars
L.A. Muth,R. Lewis, R.C. Wittmann, November 1995

We discuss how RCS target depolariza­ tion enhances cross-polarization contamination, and we present a graphical study of measurement error due to depolarization by an inclined dihedral reflector. Error correction requires complete polarimetric RCS measure­ ments. We present a simple polarimetric calibration scheme that is applicable to reciprocal antenna radars. This method uses a dihedral calibration target mounted on a rotator. Because the calibration standard can be ro­ tated, there is no need to mount and align multiple sepa­ rate standards, and clutter and noise may be rejected by averaging over rotation angle.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31