Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
W. Forster (Mission Research Corporation), November 2001
An accurate and reliable target positioning system is mandatory for a good antenna and/or radar cross section (RCS) measurement facility. Most measurements involve characterizing the radiation or scattering of the unit under test as a function of angle and frequency. Accuracy and repeatability become increasingly important in RCS measurements where background subtraction is utilized. Any error in target position will reduce the subtraction effectiveness.
Wear and tear of existing equipment coupled with improvements in motion control technology may compel some measurement facilities to upgrade their positioning system. Doing so, while keeping the rest of the measurement system intact, poses integration challenges that cannot be over emphasized. Problems will inevitably be encountered. Their source could be the new positioning system, the old measurement system, or the communication between the two.
Subtleties of how the motion control system works can be overlooked during the requirements definition phase of the project. Further idiosyncrasies can be missed during acceptance testing of the system. The Air Force Research Lab compact range has recently upgraded their target positioning system and will share the lessons learned as a result.
The design of a compact range facility in the National University of Singapore is presented. The range is designed for antenna and RCS measurements from L band to Ka-band and for test objects up to about 2 metres in size. The reflector in the range is parabolic in shape with a focal length of 3.5 metres. The instrumentation is standard measurement equipment with some purpose-built controllers for the positioners and the scanner.
Near-field ground-to-ground imaging systems are widely used to discover damage that could degrade the radar signature of low observable vehicles. However, these systems cannot presently assess the impact of this damage on the far-field signature of these vehicles. We describe progress made on a method to accurately project the near-field data from these to the far field. Near-field data for the algorithm development is provided by the hybrid finite element/integral equation RCS computer code SWITCH. The near-field data is processed to extract the near-field scattering centers using imaging. The imaging algorithm used differs from the usual far-field imaging formulation in that it incorporates some near-field physics. The processing algorithm, which incorporates a modified version of the CLEAN technique, verifies that the scattering centers that were extracted reproduce the original data when illuminated in the near-field. These near-field scattering centers are then illuminated by a plane wave to produce far-field data. This procedure was tested using VHF band scattering data for a full size treated planform. The near field data was projected to the far-field and then compared to data from a far-field SWITCH computation.
In this paper, we present an interferometric in verse synthetic aperture radar (IF-ISAR) image processing technique for three-dimensional (3-D) radar cross section (RCS) imaging of complex radar targets. A general bistatic 3-D imaging geomet ry and the corresponding 3-D image pro cessing algorithm which relates the interferomet ric phase to the target altitude are developed. The impact of multiple scattering centers on al tit ude image formation is discussed. 3-D RCS image formation examples from both indoor and outdoor test range data are demonstrated for complex radar targets.
Analyzing very large ISAR RCS data files using traditional processing software is often a cumbersome experience. The user is often forced to print out hundreds of images manually to get an overview.
We propose a solution to this problem. A generalized ISAR algorithm is utilized to automatically generate a series of complex images, creating a "movie" of images with all the information in every pixel. Regions of interest can be zoomed in or scaled to the desired range. Regions can be gated out and the corresponding RCS. presented. The time to perform analysis tasks can be reduced by factors of 10-100.
The implementation, which also contains modules for filtering and statistics, has been named Columbus. The use of Matlab and C provides portable code and a flexible platform for further development.
R. Hawley,B. Welsh, J. Berrie, J. Hughes, W. Kent, November 2000
The measurement of the frequency response of complex targets of interest for the purpose of radar cross section (RCS) analysis has become a common task for modern radar ranges. When carefully done to avoid transients, the stepped frequency continuous wave (CW) method directly measures the frequency response of the target. On the other hand, dechirp-on-receive processing utilized by linear frequency modulated (LFM) radars introduces certain distortions to the measurement that are rarely fully considered. In this paper, we derive the relationship between the true frequency response of a target and what is measured with an LFM radar utilizing dechirp-on-receive. One can use this relationship to analyze the effects of the LFM processing as a function of the target geometry or scattering mechanisms and radar parameters. Radar parameters may then be selected so as to minimize the differences between the LFM measured response and the true frequency response of the target.
Recently there has been a large effort to improve RCS range performance. Reducing errors associated with an RCS measurement requires the identification of stray signal sources, highly accurate calibration, and an understanding of the target mount interactions. This paper will illustrate the potential errors resulting from target mount interaction.
A complex RCS target of generic shapes was designed to illustrate target support interactions. Target features include a front wedge shape, a rear circular shape and a vertical fin. All the target features are separable in time using a 2-18 Ghz measurement system. The target features were designed to strongly interact with the ogival pylon. Measurements using the metal ogival support show strong interactions resulting from the shadowing effect produced by the metal ogival pylon.
The measurements were repeated using a foam column mount. Since the foam column interacts much less strongly than the metal ogive, the foam column results are much more accurate.
P.S.P. Wei,A.W. Reed, C.N. Ericksen, November 2000
In order to better understand the target-background interaction, we present new observations on the azimuthal and frequency dependences of the backgrounds, with the upper turntable (UTT) either kept stationary or in a constant rotation. In the stationary case, vector subtraction of backgrounds measured within seconds yields the lowest achievable residual levels between -50 and -60 dBsm. For the rotating UTT, the hot spots (regions of high background) exhibit a 4-fold symmetry in the azimuth, in frequency from 0.5to 4.0 GHz, and are positively identified as due to Bragg diffraction from the periodic 2-D structure pf absorbers with a 12"-square unit cell. Subtraction of backgrounds by azimuth yields a characteristic residual which mimic the structure of the hot spots. Aluminum rods (of small ka, supported by strings from the UTT in a horizontal position) provide an opportunity for studying the background interference with the echoes in HH, VH and VV, in order of decreasing signal. The results suggest that knowledge about the hot spots is essential for choosing the low background regions for measurements on low RCS objects.
Radar cross section (RCS) is a primary determinant of ship susceptibility to attack by antiship cruise missiles. RCS management benefits from the clear association of individual scatterers on a ship with measured ship RCS data, which is the scatterer identification problem. It is an. inverse scattering problem in which the scattering object is extremely complex, and environmental effects such as multipath and ducting corrupt the measurement channel. This paper describes a new method of solution to this important problem. The approach uses high fidelity models of ship RCS, of the radar signal processing, and of the environment in a constrained optimization framework. In so doing, advances are made in the areas of scatterer identification and predictive RCS model validation. Promising experimental results are presented that directly relate scatterers in a predictive RCS model of a ship to measurements of the ship taken in a maritime environment.
R.L. Eigle,A. Buterbbaugh, W.J. Kent, November 2000
The NRTF and MRC have recently completed the first bistatic RCS test utilizing the Bistatic Coherent Measurement System (BICOMS). BICOMS is the first true far-field, phase coherent, bistatic RCS measurement system in the world and is installed at the NRTF Mainsite facility. The test objects include a 10 foot long ogive and a 1/3 scale C-29 aircraft model. Full pol rimetric, 2-18 GHz monostatic and bistatic RCS measurements were performed on both targets at 17 degree and 90 degree bistatic angles. BICOMS data demonstrates excellent agreement to method-of moments RCS predictions (ogive) and indoor RCS chamber measurements (monostatic, ogive). This paper describes the BICOMS system and the test process, highlights some process improvements discovered during testing, assesses the quality of the collected data set, and analyzes the accuracy of the bistatic equivalence theorem.
The Radar Signature Management Group of Racal Defence Electronics Limited specializes in the measurement, prediction and analysis of radar signatures. Types of measurement ranges used by the Group fall into three categories: • Indoor instrumented ranges • Outdoor measurement ranges • Full-scale trials, in which dynamic measurements are made of the target in its normal operational environment This paper describes a methodology used for characterizing the uncertainties within data from one of the outdoor RCS measurement ranges, at frequencies from 8 to 12 GHz. The results are summarized and uncertainties arising from the following sources are quantified: • Linearity • Absolute Accuracy • Stability and Repeatability • Polar Diagram The effects of background and target-to-pylon support interface are also discussed. The individual uncertainties are combined in a simple manner in order to obtain an overall uncertainty bound for the range, and recom mendations are made for reducing uncertainties against the difficulty and cost of implementation.
G. Maze-Merceur,P. Bonnemasson, S. Morvan, November 2000
CAMELIA is a large RCS measurement facility (45m.12m. 13m in dimensions) whose compact range is optimized in the SHF band (1-18 GHz). Exploiting it at lower frequencies requires the modification of the absorbers and the use of huge broad band horns as RF sources (since the compact range is now not well adapted). To help understanding the radioelectric behavior of the large scale facility, we have developed a 1:10 small scale model as well as 1:10 scale horns, that are operated in the SHF band. It enables the experimental simulation of RCS measurements in the V/UHF band. Thus, all dimensions and frequencies are homothetic, only electromagnetic properties of materials are not. RCS measurements of several canonical targets have been performed in both facilities and compared. Due to non directive transmitting/receiving antenna, coupling between the targets and the wans has been exhibited. A simple ray tracing model, taking into account the measured reflection coefficient of the walls and the bistactic RCS of the target, shows good agreement with the measurements.
S. Morvan,P. Naud, S. Vermersch, Y. Chevalier, November 2000
Radar Cross Section measurements require the target to be in the far field of the illuminating and receiving antennas.
Such requirements are met in a compact range in the SHF band, but problems arise when trying to measure at lower frequencies. Typically, below 500 MHz, compact ranges are no more efficient, and one should only rely upon direct illumination. In this case, the wavefront is spherical and the field in the quiet zone is not homogeneous. Furthermore, unwanted reflections from the walls are strong due to the poor efficiency of absorbing materials at these frequencies, so the measurement that can be made have no longer something to see with RCS, especially with large targets.
We first propose a specific array antenna to minimize errors caused by wall reflections in the V-UHF band for small and medium size targets. Then an original method based upon the same array technology is proposed that allows to precisely measure the RCS of large targets. The basic idea is to generate an electromagnetic field such that the response of the target illuminated with this field is the actual RCS of the target. This is achieved by combining data collected when selecting successively each element of the array as a transmitter, and successively each other element of the array as a receiver. Simulations with a MoM code and measurements proving the validity of the method are presented.
The utility of range gating in reducing the effects of clutter on RCS measurements is well known. While the range-gating process is a form of time- delay filtering, the time-delay/range equivalence allows the process to be viewed as spatial filtering in the range domain. Responses of features separated on the basis of range and cross range have been processed by two dimensional filters to extract the RCS of the feature; this is a extension of the gating concept which relies on the spatial separation of one feature from all others. This viewpoint can be carried to its final extension of three dimensions, thus providing a unified framework suitable to establish fundamental capabilities and limits of these processes. The three dimensional gating function is achieved by processing data obtained from three-fold diversity in frequency and two angles. The possibility of spatial gating in the direction of the target rotational axis offers the potential of reducing effects of clutter from target support structures which cannot be separated from target features on the basis of range or horizontal cross range. The effectiveness of the spatial gating methods is enhanced by knowledge or estimates of the target scattering characteristics. The paper addresses various schemes applicable to SAR and ISAR systems suitable to reduce effects of noise and clutter on the measurement of RCS. Examples derived from experimental data are presented to support the assertions.
One problem in a RCS ground bounce range is that the direct signal can be interfered with by the ground reflected signal. The undesired ground bounce signal will cause errors in the RCS measurement. This paper presents a study of ground bounce reduction using a tapered and stepped resistive sheet fence.
In order to show that the proposed R-card fence technique can reduce the ground reflected signal significantly, both experimental and theoretical studies are performed. The resistance of the R-card varies based on a Kaiser-Bessel taper function. The experimentall results with and without the R-card fence show that the ground reflected signal can be attenuated by about 20dB. Both vertical and horizontal polarization cases are considered. This paper also the results of a simulation using NEC-BSC (Numerical Electromagnetic Code - Basic Scattering Code, developed at The Ohio State University ElectroScience Laboratory). Comparison of the results between measurements and simulations will be shown in this paper.
G.B. A. DeMartinis,J. Waldman, M. Coulombe, T.M. Goyette, W. Nixon, November 2000
A radar transceiver operating at 1.56 THz has recently been developed to obtain coherent, fully polarimetric W-band (98 GHz) RCS images of 1:16 scale model targets. The associated optical system operates by a scanning a small focused beam of swept frequency radiation across a scale model to resolve individual scattering centers and obtain the scaled RCS values for the centers. Output from a tunable microwave source (10 - 17 GHz) is mixed with narrow band submillimeter-wave radiation in a Schottky diode mixer to produce the chirped transmit signal. Two high-frequency Schottky diode mixers are used for reception of the V-pol and H-pol receive states, with a fourth mixer providing a system phase reference. The full 2x2 polarization scattering matrix (PSM) for each resolved center is obtained following off-line data processing. Measurement examples of five simple calibration objects and a tank are presented.
The purpose of millimeter wave RCS measurements is often to evaluate the performance of scale model aircraft. To representative ISAR it is important that also the resolution cell size is scaled in proportion to the frequency. A typical bandwidth used for full scale aircraft measurements at 10 GHz is 2 GHz. This means that for at a 1:10 scale model measured at 100 a bandwidth of 20 GHz should be used. By modifications of a HP83558A W-Band antenna measu rement equipment, a powerful RCS measurement equipment covering 75 - 103 GHz with high receiver have been achieved.
The hardware modifications and the radar and turntable performance are presented. This paper also shows the W-Band requirements for the SAAB indoor RCS measu rement facility in Linkoping, Sweden, and how these requirements are fulfilled. RCS measurements have been performed on 1:50 and 1:10 model aircraft. These measurements are discussed and ISAR images with resolution cell sizes down to 10 mm x 10 mm are presented.
During the last 6 years scientists at NIST have been focusing on radar cross section (RCS) measurements to improve RCS uncertainty analysis, and to develop new measurement and calibration artifacts and procedures. In addition, NIST has been asked to provide technical support to the DoD RCS self-certification effort.
In this talk I review the technical accomplishments of the program, and will make suggestions for future research to improve RCS calibration and measurement technology. I will also present the structure of the certi fication process, and discuss NIST's role in the ongoing certification activities.
As a result of Government and Industry RCS Teaming, initial RCS range certification exercises are underway. One critical element of certification exercises is the modeling and characterization of error terms according to the unique properties and requirements of individual RCS ranges, and the development of a method for propagating these errors into overall RCS measurement uncertainty.
Previously, we presented the statistical model for the case where errors are grouped into multiplicative and additive classes, as well as a robust methodology for the propagation of errors in both the signal space and RCS (dBsm) domains [1-3].
Initial data at the National RCS Test Facility (NRTF) RAMS site located in the White Sands Missile Range near Holloman AFB, NM, have been collected for range certification exercises. Preliminary analysis has been accomplished on certain dominant error terms for calibration uncertainty characterization only. A general approach [7] has been followed here, with the exception that multiplicative and additive error terms are treated separately. In addition, only variance effects are treated (not bias). This paper is a status of work in progress. The ultimate goal of this work is the full implementation of previously described concepts [1-3]. We plan to demonstrate an improved ability to capture the effects of both error bias and variance (as has been demonstrated mathematically to date) using a more complete set of data collections.
(U) Precise radar cross-section (RCS) calibration are needed for all RCS measurement facilities. In 1996, AFRL began to advocate the use of a series of precision, short cylinder RCS calibration standards, demonstrating consistently greater accuracy than traditional sphere targets. Previous AMTA publications [1,2,3,4] demonstrated the overall measurement fidelity of these targets. However, questions regarding the accuracy and stability of the numerical RCS solutions to these cylinders continue to be raised. This paper will strictly and thoroughly examine the accuracy of several numerical techniques used to predict the AFRL calibration cylinder RCS, and will examine such "real world" issues as gridding sensitivity, conductivity vanat1ons, frequency bandwidth, and practical manufacturing tolerances.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.