AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Radar

Low frequency RCS using the HP-8510
E. Ditata,C. Wegehenkel, November 1993

Northrop Corporation's Business and Advanced Systems Development Group has recently completed a very successful Radar Cross Section (RCS) measurements program on the USAF/Northrop B-2 bomber. One of the capabilities spawned from the program is a measurements radar system, comprised largely of off the shelf hardware, which provides high resolution whole body two-dimensional RCS images of large targets on the ground in the near field. Its high gain antennas allow operation in a space limited area and utilizes Synthetic Aperture Radar (SAR) data collection techniques. The system, though designed for use at VHF, has been expanded to operate from 100-2000 MHz in three bands. The hardware, associated signal processing, its applications and limitations are discussed.

X-band array for feeding a compact range reflector, An
J.P. McKay,L.U. Brown, T.J. DeVincente, Y. Rahmat-Samii, November 1993

The utility of array feeds for compact range reflector antenna applications is discussed. The goal is to feed a circular-aperture, offset parabolic reflector such that the central illumination is uniform and the rim illumination is zero. The illumination taper results in significant reduction of edge-diffracted fields without the use of reflector edge treatment. A methodology for designing an array feed requiring only two real excitation coefficients is outlined. A simple and cost effective array implementation is presented. The array beam forming network is realized as a radial transmission line which is excited at the center from a coaxial transmission line, and terminated at the perimeter with absorber and conductive tape. Energy is probe-coupled from the radial line to balun-fed dipole array elements. The required element amplitude excitation is obtained by adjusting the probe insertion depth, and the required element phase excitation is supplied by the traveling radial wave. Construction and test of an X-band array are summarized. The measured array patterns display a flat-topped beam with a deep null at angles corresponding to the reflector rim.

Lockheed's large compact range
A.J. Kamis, November 1993

Lockheed has recently completed the construction of a Large Compact Range (LCR) for antenna and RCS measurements. The dimensions of the facility are 60' (h) x 100' (w) x 120' (l) with a 20' x 20' cylindrical quiet zone and operational capabilities from 0.1 to 18.0 GHz. The requirement to measure low RCS levels in a room which is smaller that the desired has resulted in a unique system design. Elements of this design include a feed pit, a feed hood, and a rolled edge reflector; special absorber layouts to minimize background scattering, a high performance instrumentation radar, fast ring down feed antennas, and a unique string suspension and positioning system. This paper presents the various sub-systems that make up the LCR along with chamber validation methods and preliminary performance data. The subsystems listed in this paper are LCR's: Reflector, radar system, feed antennas, feed positioner, absorber, target handling equipment, and string positioning system. Initial design requirements are listed for some sub-systems along with range characterization data such as un-subtracted clutter levels, background subtraction performance, and theory vs. measured data for some simple conical shapes.

Transverse pattern comparison method for characterizing antenna and RCS compact ranges, The
S. Brumley, November 1993

This paper briefly reviews existing compact range performance characterization methods showing the limitations of each technique and the need for an accepted and well understood technique which provides efficient and accurate characterization of compact range measurement accuracy. A technique known as the transverse pattern comparison method is then described which has been practiced by the author and some range users for the past several years. The method is related to the well known longitudinal pattern comparison method, however, comparisons are conducted in the transverse planes where the required span of aperture displacement is much smaller and does not exceed the dimensions of the quiet zone. This method provides several advantages for characterizing compact range performance as well as enables range users to improve achievable measurement accuracies by eliminating the impact of extraneous signal errors in the quiet zone.

Design and measurements of multi-purpose compact range antenna (CRA)
M. Winebrand,E. Katz, Y. Rosner, November 1993

Traditional Compact Range Antenna (CRA) applications are related to Antenna Pattern and RCS measurements. For these purposes, as a rule, CRA are installed within or outside of an anechoic chamber as stationary equipment. However, for some modern applications, such as Electronic Warfare development, radar tracking system testing, indoor RF environment simulation and others, where dynamic and pointing properties of an AUT are to be tested, the mobile and multi-beam CRA is of great importance, since it provides the designer with powerful simulation and testing capabilities. Such a CRA has been designed, built and tested at ORBIT ADVANCED TECHNOLOGIES, LTD. The design trade-offs, CRA analysis, test set-up and results are discussed in the presented paper.

Implementation of a 22' x 22' planar near-field system for satellite antenna measurements
G. Hindman,G. Masters, November 1993

Design and implementation of a large horizontal planar near-field system delivered to Space Systems/Loral for satellite antenna testing will be discussed. The 22' x 22' scan plane is 25' above the ground and employs real-time optical compensation for the X, Y, Z corrections to the probe position. The system provides high speed multiplexed near-field measurements using NSI's software and the HP-8530A microwave receiver. System throughput is enhanced through the use of a powerful and flexible test sequencer software module.

Considerations for upgrading a pre-existing near-field system
J. Way, November 1993

In the past, various companies have installed large permanent Near-field antenna measurements systems. In many instances, a test range has been constructed for a particular project or purpose. After the conclusion of the project, the range may become dormant or under-utilized. In addition, a dormant range quickly becomes a potential source for spare parts. These factors combine quickly to render the once functioning range useless. With the current industry emphasis on cost reduction, minimizing new capital purchases, and utilization of existing resources, an upgrade of a dormant test facility is a preferable path. NSI has recently upgraded an existing Near-field antenna measurement system at Hughes Space and Communications Co. hereinafter referred to as Hughes S&C. This paper focuses upon the design considerations undertaken during the upgrade process.

Planar near-field measurements of low-sidelobe antennas
M.H. Francis,A. Newell, H. Schrank, J. Hoffman, K. Grimm, November 1993

The planar near-field measurement technique is a proved technology for measuring ordinary antennas operating in the microwave region. The development of very low-sidelobe antennas raised the question whether this technique could be used to accurately measure these antennas. We show that data taken with an open-ended waveguide probe and processed with the planar near-field methodology including the probe correction, can be used to accurately measure the sidelobes of very low-sidelobe antennas to levels of -55 to -60 dB relative to the main-beam peak. We discuss the major sources of error and show that the probe antenna interaction is one of the limiting factors in making accurate measurements. The test antenna for this study was a slotted-waveguide array whose low sidelobes were known. The near-field measurements were conducted on the NIST planar near-field facility

In flight VHF/UHF antenna pattern measurement technique for multiple antennas and multiple frequencies
J.S. DeRosa,D. Warren, November 1993

The Precision Airborne Measurement System (PAMS) is a flight test facility at Rome Laboratory which is designed to measure in-flight aircraft antenna patterns. A capability which provides antenna pattern measurements for multiple VHF and UHF antennas, at multiple frequencies, in a single flight, has recently been demonstrated. A unique half space VHF/UHF long periodic antenna is used as a ground receive antenna. Computerized airborne and ground instrumentation are used to provide the multiplexing capability. The new capability greatly reduces time and cost of flight testing. The design, construction, and calibration of the half-space log-periodic ground receiving antenna is discussed and the ground and airborne segments of the instrumentation are described.

Simulation and verification of an anechoic chamber
R.M. Taylor,E.S. Gillespie, S.R. Renegarajan, November 1993

This paper considers an electromagnetic field simulation of an anechoic chamber with experimental verification. The simulation is a Geometric Optics (Ray Tracing) mathematical model of the direct path between two antennas and interfering scattering. There are two separate models due to the frequency dependent nature of the pyramidal radar absorbing material (RAM). The model for the frequency range of 30 to 500 MHz was used to characterize the specular scattering. The specular scattering was modeled as a lossy, tapered, TEM transmission line in an inhomogeneous anisotropic tensor material. The frequency range from 500 MHz to 18 GHz was characterized by dominant tip diffraction of RAM patches and the model made use of a Uniform Theory of Diffraction code for a dielectric corner. The measurements and simulations were based on an azimuthal cylindrical scan. Diagnostic measurements were also performed by a cylindrical scan of a directional horn antenna to locate scattering sources in the chamber. A cylindrical wave, modal expansion of the diagnostic data which included a one dimensional Fast Fourier Transform with Hankel function expansions.

Generation of wideband information from a few samples of data
R. Adve,T.K. Sarkar, November 1993

The Method of Cauchy has been used to extrapolate a desired parameter over a broad range of frequencies using some information about the parameter as a few frequency points. The approach is to assume that the parameter, as a function of frequency, is a ratio of two polynomials. The problem is to determine the order of the polynomials and the coefficients that define them. For theoretical extrapolation/interpolation the sampled values of the function and, optically, a few of its derivatives with respect to frequency have been used to reconstruct the function. This technique also incorporates the method of Total Least Squares to solve the resulting matrix equation.

HARC/STAR Microwave Measurement Facility: measurement and calibration results, The
B.D. Jersak,A.J. Blanchard, J.W. Bredow, November 1993

Numerous monostatic radar cross-section (RCS) calibration routines exist in the literature. Many of these routines have been implemented at the RCS measurement facility built at the Houston Advanced Research Center in The Woodlands, TX. Key monostatic results are presented to give an indication of the measurement accuracy achievable with this chamber. Unfortunately, bistatic calibration routines are not nearly as common in the literature. As with the monostatic routines, a number of bistatic routines have been implemented and typical results are presented. Additionally, descriptions are given for some of the reference targets along with their support structures that are used during calibration.

Lockheed Sanders, Inc., antenna measurement facility.
E.A. Urbanik,D.G. LaRochelle, November 1993

Lockheed Sanders, Inc., has constructed a state-of-the-art electromagnetic measurement system. Cost considerations dictated the use of existing facilities and space, We took advantage of the lessons learned from the Lockheed Advanced Development Company's (LADC) Rye Canyon, California Facility [1]. Lockheed Sanders, Inc. now has a complete indoor measurement capability from VHF to MMW. Lockheed Sanders, Inc. needed a facility capable of making measurements over a broad range of frequencies. The system consists of a tapered chamber and a compact range. The system consists of a tapered chamber and a compact range. The tapered chamber has a measurement area of 28' x 28' x 34'. This range is capable of antenna and RCS measurements from .1 to 2 GHz. The compact range is designed for 2 to 40 GHz. Using a Scientific Atlanta, Inc. reflector scaled from the Rye Canyon reflector, a 6' x 6' quiet zone is possible. Feeds consist of a feed cluster aligned for phase and limiting parallax and horn cross-talk. Both chambers use the Flam and Russell 959 measurement system. This paper will discuss the chambers and their operation. The paper will close with a demonstration with measurements on standard, complex targets.

New extrapolation/spherical/cylindrical measurement facility at the National Institute of Standards and Technology, A
J. Guerrieri,D. Kremer, T. Rusyn, November 1993

A new multi-purpose antenna measurement facility was put into operation at the National Institute of Standards and Technology (NIST) in 1993. This facility is currently used to perform gain, pattern, and polarization measurements on probes and standard gain horns. The facility can also provide spherical and cylindrical near-field measurements. The frequency range is typically from 1 to 75 GHz. The paper discusses the capabilities of this new facility in detail. The facility has 10 m long horizontal rails for gain measurements using the NIST developed extrapolation technique. This length was chosen so that gain calibrations at 1 GHz could be performed on antennas with apertures as large as 1 meter. This facility also has a precision phi-over-theta rotator setup used to perform spherical near-field, probe pattern and polarization measurements. This setup uses a pair of 4 m long horizontal rails for positioning antennas over the center of rotation of the theta rotator. This allows antennas up to 2 m in length to be accommodated for probe pattern measurements. A set of 6 meter long vertical rails that are part of the source tower gives the facility that added capability of performing cylindrical near-field measurements. Spherical and cylindrical near-field measurements can be performed on antennas up to 3.5 m in diameter.

Applications of microwave holography in antenna design and development
K.S. Farhat,M.W. Shelley, N. Williams, November 1993

Antenna microwave holography is now a well established technique and has for a number of years provided a diagnostic tool for the evaluation and optimization of the electrically large reflector antennas used for satellite ground stations. Increasing interest is being shown in the use of the technique during the development of other complex antenna configurations in order to improve the design, minimize design cycles and, hence, reduce the overall cost. This contribution presents two examples of applications of the technique during the development of high performance antennas at ERA Technology LTD. For a corrugated slot-array antenna operating at 19.95 GHz, a clear improvement in the performance following design optimization based on the results obtained from microwave holography is shown for a 3 Am diamond reflector antenna for SATCOM applications operating at 14GHz, the technique provides a verification of distortions in the surface profile by mapping of the aperture phase distribution.

Edge effect suppression in anechoic absorber evaluation
M. Knoben,H. Pues, M. Van Craenendonck, November 1993

In this paper a novel technique for suppressing edge effects which can corrupt reflectivity measurements of large absorbers, is presented. In consists in mounting a collar of small absorbers around the test sample of the large absorbers to be evaluated. It is shown that the edge effect return is by far the most dominant return during the reflectivity measurements of large absorbers whereas the inherent reflectivity levels of these absorbers can be very low. It is claimed that the so-called superior performance of small absorbers at very high frequencies as compared to large absorbers is probably not a reality but a misinterpreted measurement result due to edge effects.

Concept design of a cylindrical outdoor near field test range for high precision RF measurements
H-J. Steiner,T. Fritzel, November 1993

DASA's high precision Compact Range Program, which already was a breakthrough in new dimensions of RF measurements standards, will not be completed by a revolutionary new and one of the world's most unique types of Cylindrical Outdoor Near-Field Test Range. The most striking component of this new type facility will be its dominating fully air-conditioned, up to 50 m high diamond shaped concrete tower which is the integral part of the vertical probe scanner subsystem. Although this test range is located outdoor, it allows extremely precise characterization of all typical parameters for state of the art antenna systems.

Polarization grids for applications in compact antenna test ranges
M.A.J. van de Griendt,V.J. Vokurka, November 1993

In polarimetric RCS measurements, the cross-polarization levels which are required in the test zone, correspond closely to those which are realizable with most Compact Antenna Test Ranges (CATR). On the other hand, such a performance may not satisfy the accuracy requirements in cross-polarization measurements of high performance microwave antennas. These applications include spacecraft antennas, ground stations for satellite communications or microwave antennas for terrestrial applications, where two polarizations are used simultaneously.

Antenna pattern measurement errors evaluation at the INTA compensated compact range
P.L. Garcia-Muller,J-L. Cano, November 1993

The plane wave quality of a compact range (CR) is usually specified in terms of the crosspolar level and the magnitude and phase ripple in the test zone. The way these deviations from the ideal plane wave affect the measurement of different antenna types can be treated by the application of the reciprocity principle between the transmitting and receiving antenna in a measurement set-up. By the application of the sampling theorem, it is found that the measured antenna pattern can be expressed as a summation of the plane wave spectrum components of the field at the test zone weighted by the true radiation pattern of the antenna under test (AUT) evaluated at the CR plane wave directions in the rotated coordinate system of the AUT. The inverse procedure can be used to extract the CR plane wave information (and therefore the CR field at the test zone by means of the Fourier series) from the measurement of a standard antenna with a known radiation pattern.

Time-frequency distribution analysis of frequency-dispersive scattering using the wavelet transformation
A. Moghaddar,E. Walton, W.D. Burnside, November 1993

Time-frequency distributions (TFD) describe a signal in terms of its joint time and frequency content. In this paper, it will be shown that TFDs are particularly useful for the analysis of frequency-dispersive electromagnetic scattering. A TFD based on the wavelet transform (WT) of the scattering data is presented. As an example, measured scattering from a waveguide cavity is considered. It is shown that the wavelet TFD can provide good time resolution for specular/point scattering features, and good frequency resolution for resonant features. Application to the scattering data from the KC-135 aircraft in flight shows that the WT is capable of detecting the resonant modes of the engine outlets of the aircraft.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31