AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Radar

High duty instrumentation radar transmitters
F.A. Miller, November 1993

Today's requirements for dynamic Radar Cross Section (RCS) test data set new demands upon instrumentation Radar systems. Transmitters must deliver high power and operate at high data rates. Additionally, noise floor reduction of coherent spurious signals improves raw data and minimizes the need for manipulation of data.

Demonstration of bistatic electromagnetic scattering measurements by spherical near-field scanning, A
M.G. Cote,R.M. Wing, November 1993

The far-field radar cross section (RCS) of a conducting sphere is obtained by transforming scattered near-fields measured on a spherical surface. A simple and convenient calibration procedure is described that involves measuring the incident field directly at the target location. Although a non probe-corrected transmission formula was used in this study the importance of prove correction in practice is demonstrated.

Measurement speed and accuracy in switched signal measurements
J. Swanstrom,R. Shoulders, November 1993

The interdependence of accuracy and speed should be considered when analyzing measurement requirements. Tradeoffs can be made to optimize the measurement when accuracy is of primary importance, or where speed is critical. Several different measurement modes of the HP 8530A Microwave Receiver are presented, each with different measurement speed and accuracy tradeoffs. Examples are given that illustrate which acquisition modes would be appropriate to optimize the acquisition speed and accuracy in a variety of applications

Satellite and satellite antenna testing with high speed electronics
D.W. Hess,C.B. Brechin, November 1993

This presentation offers some examples of performance in accomplishing high volume testing under the rigorous technical constraints imposed by the satellite industry. As an example of a high speed system, the Scientific-Atlanta Model 2095 will be used to illustrate the capability offered by today's technology. This system has found applicatio0n in the facilities of five satellite manufacturers constructed within the past three years and is proven by its demonstrated application in satellite programs.

Dual-frequency,dual-polarized millimeter wave antenna characterization
J.P. Kenney,D. Mooradd, E. Martin, L.D. Poles, November 1993

The radiation characteristics for a dual-frequency, dual-polarized millimeter wave antenna for a radar operating at 33 and 95-GHz were measured at the Ipswich Research Facility. On-pole and cross-pole radiation patterns were measured using the 2600 foot far field range. In this paper we'll discuss the general design of the antenna feed system and the instrumentation ensemble used to perform the far field characterization of this high performance large aperture dielectric lens antenna.

Remote thickness sensor
W.S. Arceneaux, November 1993

Applications that require tight tolerances on dielectric thickness control need accurate sensors. A technique has been developed that will allow for the measurement of thickness without requiring surface contact. High resolution radar imaging, commonly used in RCS measurements , is now being used to measure thickness. Electromagnetic fields reflected from the front and rear surface are detected and the time response delta is converted into thickness. A major advantage of this method is that it is not affected by varying sensor offset height.

Portable RCS diagnostic system
R. Harris,B. Freburger, D. Maffei, R. Redman, November 1993

This paper describes the most recent version of the Model 200 portable RCS diagnostic radar. The Model 200 was designed to provide high-resolution RCS measurements in unprepared rooms indoors as well as on outdoor ranges. The system can provide real aperture measurements, ISAR measurements, or SAR measurements without changing system configuration.

Ground-to-air RCS diagnostic system
R. Harris,A. Strasel, B. Freburger, C. Zappala, M. Lewis, R. Redman, November 1993

The initial phase of METRATEK's new Model 300 Radar System has been installed at the Navy's Chesapeake Tests Range (CTR) at Patuxent River, MD. This ground-to-air Multimode, Multifrequency Instrumentation Radar System (MMIRS) is a high-throughput frequency-and-polarization agile radar that is designed to drastically reduce the cost of measuring the radar cross section of airborne targets by allowing simultaneous measurements to be made at VHF through Ku Band.

High duty instrumentation radar transmitters
F.A. Miller, November 1993

Today's requirements for dynamic Radar Cross Section (RCS) test data set new demands upon instrumentation Radar systems. Transmitters must deliver high power and operate at high data rates. Additionally, noise floor reduction of coherent spurious signals improves raw data and minimizes the need for manipulation of data.

Demonstration of bistatic electromagnetic scattering measurements by spherical near-field scanning, A
M.G. Cote,R.M. Wing, November 1993

The far-field radar cross section (RCS) of a conducting sphere is obtained by transforming scattered near-fields measured on a spherical surface. A simple and convenient calibration procedure is described that involves measuring the incident field directly at the target location. Although a non probe-corrected transmission formula was used in this study the importance of prove correction in practice is demonstrated.

High resolution radar imaging using data extrapolation
I.J. Gupta,M. Beals, November 1993

Effectiveness of data extrapolation to generate high resolution radar images is studied. It is shown that polar formatted scattered field data can be extrapolated more effectively than (f, 0) domain scattered field data. The reason for this is that the forward backward linear prediction is not suitable for extrapolating the scattered field data with respect to aspect angle (0). Also, when the scattered field data is extrapolated with respect to frequency to increase the down range resolution, there can be some degradation in the cross range resolution.

Vertical bistatic RCS measurements in the MDTI radar measurement center
J.,D. Weatherington, November 1993

This paper demonstrates vertical bistatic Radar-Cross-Section measurement capability in the McDonnell Douglas Technologies, Inc. (MDTI) Radar Measurement Center )RMC). Data will be presented showing the system configuration, system specifications, and predicted and measured vertical bistatic RCF data on a variety of generic targets.

High speed antenna measurement systems for S.A.R. applications.
P. Garreau,G. Cottard, J. Ch. Bolomey, November 1993

Data collection for Synthetic Aperture Radar (SAR) antenna measurements is increasingly making measurement stages very time consuming. This paper presents the capabilities of fast Planar Near Field (PNF) instruments using a linear modulated probe array. It demonstrates the possibilities to decrease the classical near field mechanical scan time by a factor ranging from 100 to 1000. Emphasis is given to the advantages of this technique for multi parameter antenna measurements.

What is RCS in an image?
G Fliss,D. Mensa, W. Nagy, November 1993

Extracting absolute RCS levels from radar images has become a prevalent practice, but is it valid? Scattering strengths associated with pixels in radar images are derived from responses of the target averaged over frequency and aspect angle. This paper presents theoretical and experimental data for simple and complex targets with frequency-and angle-dependent scattering to illustrate differences between results of narrowband and wideband RCS measurements.

Validation measurements of reflector antenna strut lobes
R.C. Rudduck,J.Y. Wu, T-H. Lee, November 1993

The feed support struts often cause noticeable strut lobes in the patterns of reflector antennas. For example, strut lobes are apparent in the measured and calculated patterns presented in Ref. [1] for the 8-foot diameter reflector with a prime focus feed. As pointed out in [1], the calculated strut lobes are higher than the measured ones. The reason for the difference is secondary scattering by the oppositely located strut, which was not modeled in the calculated pattern in [1]. Detailed examination showed a difference of about 2 1/2 dB caused by the secondary scattering for this reflector antenna design. The purpose of this paper is to present measured and calculated patterns which explicitly demonstrate the quantitative effect of the secondary strut scattering. This effort is shown by comparing the measured strut lobe levels with the oppositely located strut removed, i.e., by using 3 struts instead of 4 struts. Calculated patterns are also given in which the secondary scattering is modeled.

Use of an infrared camera system in the analysis of phased array boresight errors, The
R.P. Gray,J.J. Kosch, November 1993

The use of electronically scanned phased array antennas in demanding rolls such as satellite communications and radar systems has led to an increasing desire to analyze the sources of error present in the boresight alignment of such systems. Not the least among these errors are those introduced by thermal effects on the various components which comprise the array structure. In an effort to understand this mechanism, this paper will discuss a technique which uses an infrared camera system to analyze the beam deflection errors caused by the effects of temperature gradients present in the antenna system.

Interpretation of near-field data for a phased array antenna
J. Friedel,R. Keyser, R.E. Johnson, November 1993

The LX/LH organization of McClellan AFB has been using near-field (NF) technology for the past two years to test an Air Force phased array receiving antenna. McClellan uses both a close range surface RF scanner and a larger offset, fain and back-transform near-field scanner. NF testing is done for both trouble-shooting purposes to support repair efforts, and for acceptance-testing to certify the antenna. The purpose of this paper is to show how McClellan interprets its planar near-field data for diagnosing antenna faults. First the various near-field techniques used by the LX/LH organization will be discussed. Following, will be an examination of the antenna defects pointed out by the NF test date. Failures will be traced to the component level where possible. Techniques other than near-field, such as electronic test, will be used to verify these problems. Additionally, the repair methods will be discussed.

Improved NRL arch technique for broad-band absorber performance evaluations
K. Liu,J. Wineman, J.M. Kilpela, November 1993

In this paper, a new error correction technique is introduced to improve the accuracy and efficiency of the traditional NRL Arch method. The use of this integrated technique allows one to correct the error terms in the traditional NRL arch setup so that a broadband evaluation of the performance of the absorber product can be performed with much better accuracy and efficiency. This technique also allows one to conduct large bistatic angle evaluation of absorbers without the cross talk and other error signal interferences. Design guidelines for a broadband NRL test arch are provided so as to successfully implement this improved NRL Arch method for a broadband evaluations of anechoic absorbers. Sample test results from Ray Proof's broadband test arch (0.5-6 GHz) are also presented.

High-polarization-purity feeds for anechoic chamber, compact, and near field test ranges
R. Gruner,J. Hazelwood, November 1993

With the recent use of dual-polarized transmission and reception on communications links, the capability to perform accurate polarization measurements is an important requirement of test-range systems. Satellite antennas are commonly measured in the clean, protected environment of compact and near-field ranges, and a circularly polarized feed/field probe is a primary factor in establishing their polarization properties. The feeds also provide excellent source-horn systems for tapered anechoic chambers, where their circular symmetry and decoupling of the fields from the absorber walls improve the often troublesome polarization characteristics of tapered chambers. Circularly polarized feeds are generally composed of four primary waveguide components: the orthomode transducer, quarter-wave polarizer, scalar ring horn, and circular waveguide step transformer. Linearly polarized feeds omit the quarter-wave polarizer. This paper discusses the design and performance of high-polarization-purity source feeds for evaluating the polarization properties of antennas under test. Circularly polarized feeds have been constructed which operate over 10- to 20-percent bandwidths from 1.5 to 70 GHz. Gain values are generally in the area of 12 to 18 dBi, with cross-polarization isolation in excess of 40 dB. Representative measured data are presented.

AIRSAR III air-to-air imaging system
R. Harris,B. Freburger, R. Redman, November 1993

This paper describes the significant upgrades to METRATEK's Model 100 AIRSAR Dynamic Imaging System since the earlier version was discussed at last year's conference. This system consists of three wideband radars mounted on a A-3 aircraft. It can generate diagnostic images airborne targets up to 200 feet in length and width. We will present examples and discussions of the solutions found to the many difficulties involved in generating high quality, high resolution, fully-calibrated SAR images of aircraft in flight from aircraft in flight. Data collection and processing hardware and software, as well as lessons learned from over 6 months of flight tests will also be described.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31