AMTA Paper Archive

 

Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)

 

Search AMTA Paper Archive
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Radar
X-band array for feeding a compact range reflector, An
J.P. McKay,L.U. Brown, T.J. DeVincente, Y. Rahmat-Samii, November 1993
The utility of array feeds for compact range reflector antenna applications is discussed. The goal is to feed a circular-aperture, offset parabolic reflector such that the central illumination is uniform and the rim illumination is zero. The illumination taper results in significant reduction of edge-diffracted fields without the use of reflector edge treatment. A methodology for designing an array feed requiring only two real excitation coefficients is outlined. A simple and cost effective array implementation is presented. The array beam forming network is realized as a radial transmission line which is excited at the center from a coaxial transmission line, and terminated at the perimeter with absorber and conductive tape. Energy is probe-coupled from the radial line to balun-fed dipole array elements. The required element amplitude excitation is obtained by adjusting the probe insertion depth, and the required element phase excitation is supplied by the traveling radial wave. Construction and test of an X-band array are summarized. The measured array patterns display a flat-topped beam with a deep null at angles corresponding to the reflector rim.
Lockheed's large compact range
A.J. Kamis, November 1993
Lockheed has recently completed the construction of a Large Compact Range (LCR) for antenna and RCS measurements. The dimensions of the facility are 60' (h) x 100' (w) x 120' (l) with a 20' x 20' cylindrical quiet zone and operational capabilities from 0.1 to 18.0 GHz. The requirement to measure low RCS levels in a room which is smaller that the desired has resulted in a unique system design. Elements of this design include a feed pit, a feed hood, and a rolled edge reflector; special absorber layouts to minimize background scattering, a high performance instrumentation radar, fast ring down feed antennas, and a unique string suspension and positioning system. This paper presents the various sub-systems that make up the LCR along with chamber validation methods and preliminary performance data. The subsystems listed in this paper are LCR's: Reflector, radar system, feed antennas, feed positioner, absorber, target handling equipment, and string positioning system. Initial design requirements are listed for some sub-systems along with range characterization data such as un-subtracted clutter levels, background subtraction performance, and theory vs. measured data for some simple conical shapes.
Transverse pattern comparison method for characterizing antenna and RCS compact ranges, The
S. Brumley, November 1993
This paper briefly reviews existing compact range performance characterization methods showing the limitations of each technique and the need for an accepted and well understood technique which provides efficient and accurate characterization of compact range measurement accuracy. A technique known as the transverse pattern comparison method is then described which has been practiced by the author and some range users for the past several years. The method is related to the well known longitudinal pattern comparison method, however, comparisons are conducted in the transverse planes where the required span of aperture displacement is much smaller and does not exceed the dimensions of the quiet zone. This method provides several advantages for characterizing compact range performance as well as enables range users to improve achievable measurement accuracies by eliminating the impact of extraneous signal errors in the quiet zone.
Design and measurements of multi-purpose compact range antenna (CRA)
M. Winebrand,E. Katz, Y. Rosner, November 1993
Traditional Compact Range Antenna (CRA) applications are related to Antenna Pattern and RCS measurements. For these purposes, as a rule, CRA are installed within or outside of an anechoic chamber as stationary equipment. However, for some modern applications, such as Electronic Warfare development, radar tracking system testing, indoor RF environment simulation and others, where dynamic and pointing properties of an AUT are to be tested, the mobile and multi-beam CRA is of great importance, since it provides the designer with powerful simulation and testing capabilities. Such a CRA has been designed, built and tested at ORBIT ADVANCED TECHNOLOGIES, LTD. The design trade-offs, CRA analysis, test set-up and results are discussed in the presented paper.
Considerations for upgrading a pre-existing near-field system
J. Way, November 1993
In the past, various companies have installed large permanent Near-field antenna measurements systems. In many instances, a test range has been constructed for a particular project or purpose. After the conclusion of the project, the range may become dormant or under-utilized. In addition, a dormant range quickly becomes a potential source for spare parts. These factors combine quickly to render the once functioning range useless. With the current industry emphasis on cost reduction, minimizing new capital purchases, and utilization of existing resources, an upgrade of a dormant test facility is a preferable path. NSI has recently upgraded an existing Near-field antenna measurement system at Hughes Space and Communications Co. hereinafter referred to as Hughes S&C. This paper focuses upon the design considerations undertaken during the upgrade process.
Planar near-field measurements of low-sidelobe antennas
M.H. Francis,A. Newell, H. Schrank, J. Hoffman, K. Grimm, November 1993
The planar near-field measurement technique is a proved technology for measuring ordinary antennas operating in the microwave region. The development of very low-sidelobe antennas raised the question whether this technique could be used to accurately measure these antennas. We show that data taken with an open-ended waveguide probe and processed with the planar near-field methodology including the probe correction, can be used to accurately measure the sidelobes of very low-sidelobe antennas to levels of -55 to -60 dB relative to the main-beam peak. We discuss the major sources of error and show that the probe antenna interaction is one of the limiting factors in making accurate measurements. The test antenna for this study was a slotted-waveguide array whose low sidelobes were known. The near-field measurements were conducted on the NIST planar near-field facility
In flight VHF/UHF antenna pattern measurement technique for multiple antennas and multiple frequencies
J.S. DeRosa,D. Warren, November 1993
The Precision Airborne Measurement System (PAMS) is a flight test facility at Rome Laboratory which is designed to measure in-flight aircraft antenna patterns. A capability which provides antenna pattern measurements for multiple VHF and UHF antennas, at multiple frequencies, in a single flight, has recently been demonstrated. A unique half space VHF/UHF long periodic antenna is used as a ground receive antenna. Computerized airborne and ground instrumentation are used to provide the multiplexing capability. The new capability greatly reduces time and cost of flight testing. The design, construction, and calibration of the half-space log-periodic ground receiving antenna is discussed and the ground and airborne segments of the instrumentation are described.
Simulation and verification of an anechoic chamber
R.M. Taylor,E.S. Gillespie, S.R. Renegarajan, November 1993
This paper considers an electromagnetic field simulation of an anechoic chamber with experimental verification. The simulation is a Geometric Optics (Ray Tracing) mathematical model of the direct path between two antennas and interfering scattering. There are two separate models due to the frequency dependent nature of the pyramidal radar absorbing material (RAM). The model for the frequency range of 30 to 500 MHz was used to characterize the specular scattering. The specular scattering was modeled as a lossy, tapered, TEM transmission line in an inhomogeneous anisotropic tensor material. The frequency range from 500 MHz to 18 GHz was characterized by dominant tip diffraction of RAM patches and the model made use of a Uniform Theory of Diffraction code for a dielectric corner. The measurements and simulations were based on an azimuthal cylindrical scan. Diagnostic measurements were also performed by a cylindrical scan of a directional horn antenna to locate scattering sources in the chamber. A cylindrical wave, modal expansion of the diagnostic data which included a one dimensional Fast Fourier Transform with Hankel function expansions.
Generation of wideband information from a few samples of data
R. Adve,T.K. Sarkar, November 1993
The Method of Cauchy has been used to extrapolate a desired parameter over a broad range of frequencies using some information about the parameter as a few frequency points. The approach is to assume that the parameter, as a function of frequency, is a ratio of two polynomials. The problem is to determine the order of the polynomials and the coefficients that define them. For theoretical extrapolation/interpolation the sampled values of the function and, optically, a few of its derivatives with respect to frequency have been used to reconstruct the function. This technique also incorporates the method of Total Least Squares to solve the resulting matrix equation.
HARC/STAR Microwave Measurement Facility: measurement and calibration results, The
B.D. Jersak,A.J. Blanchard, J.W. Bredow, November 1993
Numerous monostatic radar cross-section (RCS) calibration routines exist in the literature. Many of these routines have been implemented at the RCS measurement facility built at the Houston Advanced Research Center in The Woodlands, TX. Key monostatic results are presented to give an indication of the measurement accuracy achievable with this chamber. Unfortunately, bistatic calibration routines are not nearly as common in the literature. As with the monostatic routines, a number of bistatic routines have been implemented and typical results are presented. Additionally, descriptions are given for some of the reference targets along with their support structures that are used during calibration.
Lockheed Sanders, Inc., antenna measurement facility.
E.A. Urbanik,D.G. LaRochelle, November 1993
Lockheed Sanders, Inc., has constructed a state-of-the-art electromagnetic measurement system. Cost considerations dictated the use of existing facilities and space, We took advantage of the lessons learned from the Lockheed Advanced Development Company's (LADC) Rye Canyon, California Facility [1]. Lockheed Sanders, Inc. now has a complete indoor measurement capability from VHF to MMW. Lockheed Sanders, Inc. needed a facility capable of making measurements over a broad range of frequencies. The system consists of a tapered chamber and a compact range. The system consists of a tapered chamber and a compact range. The tapered chamber has a measurement area of 28' x 28' x 34'. This range is capable of antenna and RCS measurements from .1 to 2 GHz. The compact range is designed for 2 to 40 GHz. Using a Scientific Atlanta, Inc. reflector scaled from the Rye Canyon reflector, a 6' x 6' quiet zone is possible. Feeds consist of a feed cluster aligned for phase and limiting parallax and horn cross-talk. Both chambers use the Flam and Russell 959 measurement system. This paper will discuss the chambers and their operation. The paper will close with a demonstration with measurements on standard, complex targets.
New extrapolation/spherical/cylindrical measurement facility at the National Institute of Standards and Technology, A
J. Guerrieri,D. Kremer, T. Rusyn, November 1993
A new multi-purpose antenna measurement facility was put into operation at the National Institute of Standards and Technology (NIST) in 1993. This facility is currently used to perform gain, pattern, and polarization measurements on probes and standard gain horns. The facility can also provide spherical and cylindrical near-field measurements. The frequency range is typically from 1 to 75 GHz. The paper discusses the capabilities of this new facility in detail. The facility has 10 m long horizontal rails for gain measurements using the NIST developed extrapolation technique. This length was chosen so that gain calibrations at 1 GHz could be performed on antennas with apertures as large as 1 meter. This facility also has a precision phi-over-theta rotator setup used to perform spherical near-field, probe pattern and polarization measurements. This setup uses a pair of 4 m long horizontal rails for positioning antennas over the center of rotation of the theta rotator. This allows antennas up to 2 m in length to be accommodated for probe pattern measurements. A set of 6 meter long vertical rails that are part of the source tower gives the facility that added capability of performing cylindrical near-field measurements. Spherical and cylindrical near-field measurements can be performed on antennas up to 3.5 m in diameter.
Applications of microwave holography in antenna design and development
K.S. Farhat,M.W. Shelley, N. Williams, November 1993
Antenna microwave holography is now a well established technique and has for a number of years provided a diagnostic tool for the evaluation and optimization of the electrically large reflector antennas used for satellite ground stations. Increasing interest is being shown in the use of the technique during the development of other complex antenna configurations in order to improve the design, minimize design cycles and, hence, reduce the overall cost. This contribution presents two examples of applications of the technique during the development of high performance antennas at ERA Technology LTD. For a corrugated slot-array antenna operating at 19.95 GHz, a clear improvement in the performance following design optimization based on the results obtained from microwave holography is shown for a 3 Am diamond reflector antenna for SATCOM applications operating at 14GHz, the technique provides a verification of distortions in the surface profile by mapping of the aperture phase distribution.
Edge effect suppression in anechoic absorber evaluation
M. Knoben,H. Pues, M. Van Craenendonck, November 1993
In this paper a novel technique for suppressing edge effects which can corrupt reflectivity measurements of large absorbers, is presented. In consists in mounting a collar of small absorbers around the test sample of the large absorbers to be evaluated. It is shown that the edge effect return is by far the most dominant return during the reflectivity measurements of large absorbers whereas the inherent reflectivity levels of these absorbers can be very low. It is claimed that the so-called superior performance of small absorbers at very high frequencies as compared to large absorbers is probably not a reality but a misinterpreted measurement result due to edge effects.
Concept design of a cylindrical outdoor near field test range for high precision RF measurements
H-J. Steiner,T. Fritzel, November 1993
DASA's high precision Compact Range Program, which already was a breakthrough in new dimensions of RF measurements standards, will not be completed by a revolutionary new and one of the world's most unique types of Cylindrical Outdoor Near-Field Test Range. The most striking component of this new type facility will be its dominating fully air-conditioned, up to 50 m high diamond shaped concrete tower which is the integral part of the vertical probe scanner subsystem. Although this test range is located outdoor, it allows extremely precise characterization of all typical parameters for state of the art antenna systems.
Antenna pattern measurement errors evaluation at the INTA compensated compact range
P.L. Garcia-Muller,J-L. Cano, November 1993
The plane wave quality of a compact range (CR) is usually specified in terms of the crosspolar level and the magnitude and phase ripple in the test zone. The way these deviations from the ideal plane wave affect the measurement of different antenna types can be treated by the application of the reciprocity principle between the transmitting and receiving antenna in a measurement set-up. By the application of the sampling theorem, it is found that the measured antenna pattern can be expressed as a summation of the plane wave spectrum components of the field at the test zone weighted by the true radiation pattern of the antenna under test (AUT) evaluated at the CR plane wave directions in the rotated coordinate system of the AUT. The inverse procedure can be used to extract the CR plane wave information (and therefore the CR field at the test zone by means of the Fourier series) from the measurement of a standard antenna with a known radiation pattern.
Time-frequency distribution analysis of frequency-dispersive scattering using the wavelet transformation
A. Moghaddar,E. Walton, W.D. Burnside, November 1993
Time-frequency distributions (TFD) describe a signal in terms of its joint time and frequency content. In this paper, it will be shown that TFDs are particularly useful for the analysis of frequency-dispersive electromagnetic scattering. A TFD based on the wavelet transform (WT) of the scattering data is presented. As an example, measured scattering from a waveguide cavity is considered. It is shown that the wavelet TFD can provide good time resolution for specular/point scattering features, and good frequency resolution for resonant features. Application to the scattering data from the KC-135 aircraft in flight shows that the WT is capable of detecting the resonant modes of the engine outlets of the aircraft.
Scattering by a simplified ship deckhouse model
B. Badipour,M.,J. Coulombe, T. Ferdinand, W. Wasylkiwskyj, November 1993
To gain greater insight into the design of surface ships with reduced radar cross-section characteristics, a structure resembling a ship deckhouse was physically modeled and measured. The structure was represented as a truncated pyramid. Four scaled pyramids were fabricated, all identical except for the radii of the four vertical (slanted) edges. The pyramids were measured at the University of Massachusetts, Lowell Research Foundation, submillimeter laser compact range. Measurements were made a scaled X-band using a laser-based system that operates at 585 GHz with the pyramids scaled at a ratio of 1:58.5. These shaper were measured at 0.75 degrees depression angles on a smooth metal ground plane at both HH and VV polarizations. The goal of this study was to determine if small changes in the radius of the curvature of the slanted edges could significantly affect the radar cross-section of the pyramid. In this paper the results of measurements of the pyramids will be presented. The data are compared with computer code predictions and the differences are discussed.
RCS measurements of circular patch antennas
A.S. Ali,B.W. Deats, November 1993
There has been a great deal of interest in microstrip antennas and arrays in the past decade or so due to their low cost, light weight, and conformability. Most research to date on microstrip antennas has been focused on developing techniques for characterizing their radiation properties. However, interest in evaluating the scattering properties of such antennas is increasing. The RCS of three configurations of circular patch antennas have been measured versus frequency and are compared to Moment Method predictions; a single open-circuited element, a single element terminated in a 50 ohm load, and a 3 x 3 array of open-circuited elements. In most cases, the measurements and predictions are in good agreement.
Minimum time for RCS measurements
D. Mensa,D. Wirtz, November 1993
The design of many modern RCS instrumentation systems is driven by the time required to complete a measurement which establishes the throughput rate of the RCS facility and therefore impacts the operating cost and efficiency. Time considerations are of particular importance when wideband systems are used to measure large targets with low RCS because multiple observations are required to span the frequency band or to increase sensitivity by coherent integration. Although significant improvements have been made to minimize inefficiencies in instrumentation systems, the fundamental limit of measurement time is governed by physical considerations of power, energy, noise, target dimension, and RCS. Evaluating the performance of a particular radar design can be facilitated by comparing the predicted measurement time with a theoretical optimum. The purpose of this paper is to develop estimates of the minimum measurement time under optimum conditions. Although likely precluded by practical considerations, the theoretical limits provide estimates of the maximum degree of radar performance and measures of optimality in practical systems.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.