Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
Antenna pattern measurements are dominantly influenced by the presence of extraneous fields in the test zone. A fast and simple way to recognize problems in pattern measurements provides the Antenna Pattern Comparison-technique (APC). This method usually consists of recording azimuthal patterns on different positions across the test zone. Differences in the amplitude data give a rough indication for the magnitude of the interfering signal. The "Novel APC-method" (NAPC) employs both amplitude- and phase-data so that it becomes possible to separate the direct and the extraneous signals from each other. It will be shown that this method is eminently suited to correct radiation patterns of high-gain and low-sidelobe antennas. For verification purposes corrected patterns are compared with time-dated ones and the resemblance is excellent. It is concluded that the NAPC-method is promising and powerful technique for accurate antenna pattern determination, mainly because it can be easily implemented for most applications.
A. Jain,C.R. Boerman, E. Walton, V.J. Vokurka, November 1993
The Hughes Aircraft Company Compact Range facility for antenna and RCS measurements, scheduled for completion in 1993, is described. The facility features two compact ranges. Chamber 1 was designed for a 4 to 6 foot quiet zone, and Chamber 2 was designed for a 10 to 14 foot quiet zone. Each chamber is TEMPEST shielded with 1/4 inch welded steel panels to meet NSA standard 65-6 for RF isolation greater than 100 dB up to 100 GHz, with personnel access through double inter locked Huntley RFI/EMI sliding pneumatic doors certified to maintain 100 dB isolation. While Chamber 1 is designed to operate in the frequency range from 2 to 100 GHz, Chamber 2 is designed for the 1 to 100 GHz region. Both RCS measurements and antenna field patterns/gain measurements can be made in each chamber. The reflectors used are the March Microwave Dual Parabolic Cylindrical Reflector System with the sub-reflector mounted on the ceiling to permit horizontal target cuts to be measured in the symmetrical plane of the reflector system.
A. Seville (The University of Sheffield),E.H. England (The University of Sheffield),
G.G. Cook (The University of Sheffield),
J.C. Bennett (The University of Sheffield), November 1992
The measurement of modern low sidelobe antennas has brought a greater need for accurate site characterisation in order to quantify the effects of site scatterers. A multi-frequency Hankel function out-propagation technique is used to locate and identify site scatterers whose effects may degrade the patterns of antennas measured on the site.
The effects of measurement distance on the sidelobe sum and difference patterns are examined. Highly efficient and robust aperture distributions, the Taylor ñ and the Bayliss ñ, are used to generate date representative of all such distributions. Patterns are obtained through numerical integration of the near-field inegral with exact phase term. Taylor ñ patterns are computed for sidelobe levels to -60 db (published in 1984), and Bayliss patterns for sidelobe levels down to -50 db (new results). For both sum and difference patterns, the change in first sidelobe height, in db, is linear with the log of the measurement distance normalized by 2D(squared)/(lambda). In both cases the lines for different sidelobe levels have the same slope. These results, and typical patterns showing sidelobe changes, will be presented.
K.M. Lambert (Analex Corporation),R.C. Rudduck (Ohio State University), November 1992
One antenna characteristic that is difficult to predict accurately is the antenna temperature. There are two basic reasons this is true. First, the effect of the full volumetric radiation pattern of the antenna must be taken into account. Secondly, the antenna temperature calculation requires knowledge of the noise power incident on the antenna, from the environment in which it is operating. This paper describes a measurement program which was undertaken to establish the accuracy of a model which is being used to predict antenna temperature for earth based reflector antennas. The measurements were conducted at 11 GHz, using an 8-foot diameter Cassegrain reflector antenna in an outdoor environment. The measurements are compared to predictions generated by The Ohio State University Reflector Antenna Code. Use of the reflector code allows the full volumetric pattern of the antenna, including all sidelobes, backlobes and cross-polarized response, to be included in the calculation. Additionally, the contribution to the antenna temperature from the various regions of the pattern can be calculated separately and analyzed.
J.R. Tighe (Synthesizers Ltd.),Sharon Bradley (Synthesizers Ltd.)
Joe Granados (New Mexico State University), November 1992
Antenna testing is generally predicated upon using a Standard Gain Antenna co-located with the Antenna Under Test (AUT). At HF/VHF/UHF frequencies Standard Gain Antennas (Horns) are too large for co-location on the Antenna Under Test's (AUT's) rotating platform. Co-location is desirable for maintaining equal range lengths and equality in the environment; a prime source of multipath effects. In the HF/VHF/UHF frequencies bands the Log-Periodic is quite often employed as the "Source Antenna" but not necessarily the "Reference Antenna". Dipoles, monopoles above a large ground plane and horn antennas are often chosen as the Reference Antenna. The Log-Periodic Antenna, although also large, has pattern characteristics similar to the Standard Gain Horn's, has a superior and flatter bandwidth and is considerably lighter in weight. This paper will discuss a technique for using a Log-Periodic Antenna as a Standard Gain Antenna when co-location with the Antenna Under Test is not feasible.
S. Mishra (David Florida Laboratory),C.L. Larose (David Florida Laboratory),
C.W. Trueman (Concordia University),
S.J. Kubina (Concordia University), November 1992
This paper presents precision measurements of the RCS of a simplified aircraft geometry called the "generic aircraft". The RCS is measured over a frequency range of 2 to 18 GHz, and for incidence angle from "nose-on" through "broadside" to "tail on". This data is presented in the form of RCS contours as a function of frequency and incidence angle, and is compared with the computed RCS using wire-grid modeling. The contours show distinct patterns due to airframe resonance and due to the interference of the scattered field from the nose and from the tail of the aircraft.
S. Shammas (Israel Aircraft Industries),H. Wineberg (Israel Aircraft Industries),
S. Shochat (Israel Aircraft Industries),
S. Hendler (Israel Aircraft Industries), November 1992
A method has been developed by which the fair-field RCS of a target can be evaluated from its RCS measured in the near field. The method can compensate for the nonuniformity of the antenna pattern which can be a function of the angle, the frequency, and the target distance. A correction transform is evaluated which depends on the antenna pattern, the frequency, the target distance and the target size. The correction transform is independent of the target geometry. The RCS of a target is measured in the near field, in a band of frequencies around the frequency at which the far field RCS of the target is desired. The method can practically handle directional scattering elements, shading of the scattering elements by each other, and interactions among the scattering elements. The reconstructed RCS evaluated by this method shows excellent agreement with the actual far-field RCS.
D-C. Chang (Chung Shan Institute of Science and Technology),T.Z. Chang (Chung Shan Institute of Science and Technology),
I.J. Fu (Chung Shan Institute of Science and Technology),
R.C. Liu (Chung Shan Institute of Science and Technology), November 1992
A 4 foot by 4 foot near field planar scanner is used to evaluate the performance of a SA5751 compact range in CSIST. Using the far field patterns integrated from the scanned aperture fields, the coming directions of the clutters in the chamber can be determined. Often the clutter level is less than the side lobe level of the far field pattern, the scanned field is multiplied by a certain weighting function before integration to pop out the clutter signal. However the weighting method would broaden the main beam and hence clutters coming close along the reflected wave of the reflector are still can not be seen (sic). In this article, a method called main beam suppression, subtracting a constant filed (sic) on the scanned aperture, is introduced to solve this kind of problem and the result shows it serves well for finding those clutters hidden by the main beam and the side lobes nearer to it.
A.L. Sinopoli (The Ohio State University),M. Gilreath (NASA),
W.D. Burnside (The Ohio State University), November 1992
The Slotline/Bowtie Hybrid (SBH) antenna concept has been applied to develop an ultra wide bandwidth feed for compact range applications. The initial design requirements were to develop a feed with a 30 degree 1dB beamwidth from 1 to 18 GHz. It was felt that one could sacrifice the beamwidth at the lower frequencies somewhat because that would reduce the feed spill over which is normally the worst at lower frequencies. The resulting antenna has an 18" by 18" aperture and basically meets the bandwidth requirements. In the worst case, it has 2 dB variation across the desired 30" beamwidth. The phase center is relatively constant, and VSWR is basically less than 2:1 from 1 to 18 GHz. Measured and calculated results are shown to illustrate the performance of this new feed antenna. In addition, the measured amplitude and phase patterns have been input to a reflector analysis code to predict the field probe data in the simulated quiet zone. These results clearly show that this new feed performs very well from 1 to 18 GHz.
E. Walton (The Ohio State University ElectroScience Laboratory),A. Moghaddar (The Ohio State University ElectroScience Laboratory),
I.J. Gupta (The Ohio State University ElectroScience Laboratory),
M.W. Tu (The Ohio State University ElectroScience Laboratory), November 1992
Recently, super resolution algorithm have been used in radar target imaging to increase the down range and/or the cross range resolution. In the open literature, however, the super resolution algorithms have been applied to simulated targets or very simple targets measured in a test range. In this paper, the super resolution algorithms, namely the hybrid algorithm and the 2-D linear prediction, are applied to more realistic targets. One of the targets is a flat plate model of the F-117 aircraft. The back-scattered fields of the flat plate model were measured in a compact range. The other target is a Mooney 231 aircraft. The aircraft was flown in a circular pattern approximately 10 miles from the radar. It is shown that the super resolution algorithm can be successfully applied to these targets.
B. Himed (Adaptive Technology, Inc.),D.R. Miedaner (Adaptive Technology, Inc.),
P.H. Stockman (Adaptive Technology, Inc.), November 1992
In recent years, a need has arisen to measure the patterns of high gain antennas having ultra low sidelobe levels (ULSA), usually installed on aircraft platforms. The objective is to measure antenna patterns which include the platform multipath, generated by reflections off the aircraft, but which exclude the effects of range multipath. These advanced antennas require testing capabilities to about 60 dB below the maximum level. Moreover, the range multipath is at times expected to be stronger than the direct path if the mainbeam antenna is pointed below the horizon. Aggravating the problem is the fact that usually CW antenna patterns are desired. ATEK developed an innovative technique which accomplishes the required tasks using the following concept; A 20 MHz signal is used to generate desired weight taps needed to cancel the received signal. Since part of these taps are used to cancel the desired signal, it has been shown that they can be used separately, following the adaptive process to measure the antenna patterns with the multipath suppressed. The technique can be used to measure very accurately antenna patterns in response to either CW or non-CW signals.
S. Christopher (Electronics & Radar Development Establishment),A. Kaul (Electronics & Radar Development Establishment),
K.M. Balakrishnan (Electronics & Radar Development Establishment),
M.S. Easwaran (Electronics & Radar Development Establishment),
S.S. Rao (Electronics & Radar Development Establishment), November 1992
Despite their high cost, phased array antennas are becoming popular for radar applications because of their ability to provide reliable information even in a hostile environment. Evaluation of these antennas requires parameters like gain, radiation pattern, beam width, sidelobe (both near and far off) azimuth and elevation null depth, etc. to be tested over the entire range of frequency spots and scan angles. Typically, if the number of frequency spots are 24 and the number of beam positions for which the measurement has to be done are about 100, then the total number of measurements needed to generate the required data are 7200. In addition, phased arrays with a space feed have to be initially collimated at all the spot frequencies. The outdoor testing of these many parameters may not be convenient, and at times it may even be impossible. The planar near field measurement technique provides a systematic and accurate method of measuring large array antennas for all the required parameters.
P. Petre (Syracuse University),T.K. Sarkar (Syracuse University), November 1992
An alternate method is presented for computing far-field antenna patterns from planar near-field measurements. The method utilizes near-field data to determine equivalent magnetic current sources over a fictitious planar surface which encompasses the antenna, and these currents are used to ascertain the far-fields. An electric field integral equation (EFIE) is developed to relate the near-fields to the equivalent magnetic currents. Method of moments (MOM) procedure is used to transform the integral equation into a matrix one. The matrix equation is solved with the conjugate gradient method (CGM), and in the case of a rectangular matrix, a least squares solution for the currents is found without explicitly computing the normal form of the operation. Near-field to far-field transformation for planar scanning may be efficiently performed under certain conditions by exploiting the block Toeplitz structure of the matrix and using CGM and Fast Fourier Transform (CGFFT) thereby drastically reducing comparison and storage requirements. Numerical results are presented by extrapolating the far-fields using experimental near-field data.
J. Guerrieri (National Institute of Standards and Technology),A. Repjar (National Institute of Standards and Technology),
D. Tamura (National Institute of Standards and Technology), November 1992
When the planar near-field method is used for antenna characterization, two probes are required to measure an antenna under test (AUT). The receiving patterns (both amplitude and phase) of these probes, obtained from planar near-field measurements, must be utilized to accurately determine the far field of the AUT. This process is commonly called planar near field probe correction. When the AUT is nominally circularly polarized (CP), the measurements are more accurate and efficient if nominally circularly-polarized probes are used. Further efficiency is obtained when only one probe which is dual-polarized is used to allow for simultaneous measurements of both components. However, when using dual-port CP probes to measure the antenna, we must apply the probe correction even for on-axis measurements.
S. Christopher (Electronics & Radar Development Establishment),S.S. Rao (Electronics and Radar Development Establishment), November 1992
Near field measurement techniques have become popular now a days (sic) and they are preferred for many applications to the conventional testing. In particular, for testing large planar arrays with a variety of parameters to measure, planar near field technique proves to be useful. The design of the planar near field measurement system varies with the needs of the measurements. This flexibility makes it suitable for somespecial (sic) tests on array antennas. The important design parametersinclude (sic) the type of scan, positional error limit, receiver and source instabilities, cabling, etc. It discuss (sic) in detail the type of scanning when large number of parameters like sum, azimuth and elevation difference patterns of an array antenna for various scan positions are to be measured. This paper describes a planar field system of size 2.5X2.5 metres (sic) and discusses its design details and in particular the type of scanning and the methods of correcting instability of the entire system.
W.K. Dishman (Scientific-Atlanta, Inc.),S.J. Manning (Scientific-Atlanta, Inc.), November 1992
A series of measurements to validate the performance of a Planar Near-Field (PNF) Antenna Test Range located at the Satellite and Aerospace Systems Division at Spar Aerospace Limited were made by Scientific-Atlanta during the month of February 1992. These measurements were made as a part of a contract to provide Spar with a Model 2095 Microwave Measurement System with planar near-field software options and related instrumentation and hardware. The range validation consisted of a series of self-tests and far-field pattern comparison tests using a planar array antenna provided by Spar that had been independently calibrated at another range facility. This paper describes the range validation tests and presents some of the results. Comparisons of far-field patterns measured on the validation antenna at both the Spar PNF facility and another antenna range are presented.
G. Hindman (Nearfield Systems),D. Slater (Nearfield Systems), November 1992
Increasing demands on antenna design characteristics have led to corresponding increases in test requirements, particularly in the need for high speed multi-frequency or multi-beam measurements. Special steps are required in the data acquisition process to maintain synchronization of the data to insure accurate results are achieved. This paper will describe techniques used by NSI for a planar near-field measurement system using a Hewlett Packard 8530A with multiple frequencies and multiple beams acquired in the inner loop of the scan pattern.
P. Garreau (SATIMO France),Kees Van't Klooster (ESA-ESTEC The Netherlands)
J.Ch. Bolomey (SUPELEC France), November 1992
This paper presents the feasability (sic) to explore the Focal Plane (FP) of a Compact Antenna Test Range (CATR). We first introduce the interest of getting very fast the Far Field Pattern of an antenna with a 2D modulated scattering array located at the focus of a CATR. Then, we discuss the geometric, electrical and optical constraints involved when using this technique. A comparison with a classical measurement performed at ESA-ESTEC is shown and we conclude by emphasizing the potentialities of this technique.
B. Newton (Thorn EMI Electronics),N. Mott (Hewlett-Packard Company), November 1992
As part of the Phalanx weapons system refurbishment program, Thorn EMI Electronics was required to perform a sequence of monopulse feed-pattern measurements at microwave frequencies and receiver-pattern measurements at IF frequencies. The feed-pattern measurements were accomplished using a HP 85301A antenna measurement system. Measurement of the receiver IF patterns, however, required a more novel approach.
Because of dual downconversion within the Phalanx receiver, adaptation of the HP 85301A system was required to allow for this frequency translation characteristic. Reconfiguration time between the feed RF and the receiver IF test systems was to be kept to a minimum. The antenna measurement system is described in this paper and IF patterns are presented.
The results show that the performance of the test system is not compromised in any way.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.