AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Equiangular Phase Shifting Holography for THz Near-field/Far-field Prediction
Gary Junkin,Josep Parrón Granados, Pedro de Paco Sánchez, Yi Lu, November 2014
A three-step equiangular (120º) phase shifting holography (EPSH) technique is proposed for THz antenna near-field/far-field prediction. The method is attractive from the viewpoint of receiver sensitivity, phase accuracy over the entire complex plane, simplified detector array architecture, as well as reducing planarity requirements of the near-field scanner. Numerical modeling is presented for the holographic receiver performance, using expected phase shift calibrations errors and phase shift noise. The receiver model incorporates responsivity and thermal noise specifications of a commercial Schottky diode detector. Additionally, simulated near-field patterns at 372GHz demonstrate the convenience of the method for accurate and high dynamic range THz near-field/far-field predictions, using a phase-shifter calibrated to ±0.1°.
Achieving High Accuracy from a Near-field Scanner without Perfect Positioning
George Cheng,Yong Zhu, Jan Grzesik, November 2014
We propose a technique which achieves highly accurate near-field data as well as far-field patterns despite the positioning inaccuracy of the scanner in the antenna near-field measurements. The method involves position sensing hardware in conjunction with data processing software. The underlying theory is provided by the Field Mapping Algorithm (FMA), which transforms exactly the measured field data on a conventional planar, spherical, or cylindrical surface, indeed on any enclosing surface, to any other surface of interest.  In our modified near-field scanning system, a position recording laser device is attached to the probe. The positions of data grid points are thus found and recorded along with the raw RF data.  The raw data acquired over an irregular, imperfect surface is subsequently converted exactly to a designated, regular surface of canonical type based on the FMA and its associated position information.  Once the near-field data is determined at all required grid points, the far-field pattern per se is obtained via a conventional near-field-to-far-field transformation.  Moreover, and perhaps just as importantly, the interplay between our FMA and the free-form position/RF recording methodology just described allows us to bypass entirely the arduous task of strict antenna alignment.  The free-form position/RF data are simply propagated by the FMA software to some perfectly aligned reference surface ideally adapted as a springboard for any intended far-field buildup. Our proposed marriage of a standard scanning system and a position recorder, with otherwise imperfect RF/location data restored to ideal status under the guidance of the FMA, clearly offers the advantage of high precision at minimal equipment cost.  It is, simply stated, a win-win budget/accuracy RF measurement solution. Two analytic examples and one measurement case are given for demonstration.  The first example is a circular aperture within an infinite conducting plane, the second is a 10 lambda x 10 lambda dipole array antenna.  The measurement case involves a waveguide slot array antenna.  In all three cases, the near-field data were deliberately acquired over imperfectly located grid points. The FMA was then applied to obtain near-field data at the preferred, regularly arranged grid points from these position compromised values.  Excellent grid-to-grid near-field comparison and calculated far-field results were obtained.
Accurate Planar Near-Field Antenna Measurements Without Full Anechoic Chamber
Greg Hindman,Stuart Gregson, Allen Newell, November 2014
In recent times, planar near-field antenna measurements have largely been performed within fully absorber lined anechoic chambers.  However this is a comparatively recent development as, due to the nature of the electromagnetic radiation when measuring medium to high gain antennas, one can often obtain excellent results when testing within only a partially absorber lined chamber [1], or in some cases even when using absorber placed principally behind the acquisition plane. As absorber can be bulky and costly, optimizing its usage often becomes a significant factor when planning a new facility.  This situation becomes more pressing when the designated test environment is not exclusively devoted to antenna pattern testing with non-ideal absorber coverage being, in some cases, mandated, c.f. EMC testing.  Planar test systems lend themselves to deployment within multipurpose installations as they are routinely constructed so as to be portable [2] thereby allowing partial or perhaps complete removal of the test system between measurement campaigns. This paper will present measured data taken using a number of different planar antenna test systems with and without anechoic chambers to summarize what is achievable and to provide design guidelines for testing within non-ideal anechoic environments.  NSI’s Planar Mathematical Absorber Reflection Suppression (MARS) technique [3, 4] will be utilized to show additional improvements in performance that can be achieved through the use of modern sophisticated post processing. Keywords: Planar Near-Field, Reflection Suppression, Scattering, MARS. REFERENCES S.F. Gregson, A.C. Newell, G.E. Hindman, M.J. Carey, “Extension of The Mathematical Absorber Reflection Suppression Technique To The Planar Near-Field Geometry”, AMTA, Atlanta, October 2010. G.E. Hindman, “Applications of Portable Near-Field Antenna Measurement Systems”, AMTA, October, 1991. S.F. Gregson, A.C. Newell, G.E. Hindman, “Advances In Planar Mathematical Absorber Reflection Suppression”, AMTA, Denver, Colorado, October 2011. S.F. Gregson, A.C. Newell, G.E. Hindman, P. Pelland, “Range Multipath Reduction In Plane-Polar Near-Field Antenna Measurements”, AMTA, Seattle, October 2012.
Application of Huygens' Principle to a Dual Frequency Constant Beamwidth Reflector Operating in the Focused Near-Field
Herbert Aumann,Nuri Emanetoglu, November 2014
A technique is presented for determining the pattern of an antenna in the focused near-field from cylindrical near-field measurements. Although the same objective could be achieved by conventional near-field to far-field transformation followed by a back projection, the proposed technique has an intuitive appeal and is considerably simpler and faster. The focused near-field antenna pattern is obtained by applying Huygens’ principle, as embodied in the field equivalent principle, directly to near-field measurements and by including an “obliquity factor” to suppress backlobe radiation.  The technique was experimentally verified by comparison with far-field patterns obtained by conventional cylindrical near-field to far-field transformation and by EM simulations. Excellent agreement in sidelobe levels and beamwidth was achieved.  The technique was applied to the 25 in diameter reflector antenna of a harmonic radar operating at 5.8 GHz and 11.6 GHz. Since the operating range of this radar is less than 40 ft, the reflector is the near-field at both frequencies. By defocusing the reflector at the harmonic frequency the beamwidths and gains at both frequencies can be made the same. The defocusing is accomplished by exploiting the frequency dependent phase center displacement of a log-periodic feed.
Antenna Measurements from UHF to V-Band in AFRL's Newly Commissioned OneRY Indoor Range
James Stewart,James Park, Boris Tomasic, Bob Simspon, November 2014
Experimental measurement plays a key role for technology maturation in an R&D environment.  In this paper we highlight the versatility of a new compact range at the Air Force Research Laboratory (AFRL), Sensors Directorate.  In its first year of operation, the OneRY Range supported a wide variety of projects ranging from electrically small antennas to 20’ structures, spanning frequencies of 400 MHz to 45 GHz, and involving applications covering land, airborne, and space-based platforms.  Here we present measured results from three different antenna development efforts for the Air Force.  The first effort involves a UHF meta-material inspired antenna developed for an airborne application.  In addition to successfully demonstrating relatively low frequency capability for a compact range, this effort met the challenge to measure antenna patterns from a physically large target.  Results from OneRY are compared to those collected from a tapered chamber.  Next we show experimental measurement of digital beam forming (DBF) in a large conformal phased array antenna operating at L and S bands.  The DBF experimental testing is part of a follow-on effort to an Advance Technology Demonstration conformal array supporting satellite tracking, telemetry and command (TT&C).  Finally, we present results from a “quick look” investigation into the operability of a COTS antenna system matched to a third party radome.  The project supports airborne satellite communications at K, Ka, and Q bands.  Performance of a high frequency extension (18-50 GHz) to the compact range is examined to include an inter-range comparison to planar near-field measurements.  A description of the OneRY Indoor Range is also provided.
The CROMMA Facility at NIST Boulder: A Unified Coordinated Metrology Space for Millimeter-Wave Antenna Characterization
Joshua A. Gordon,David Novotny, Mike Francis, Ron Wittmann, Miranda Butler, Jeffrey Guerrieri, November 2014
The development of the Configurable Robotic Millimeter-Wave Antenna facility (CROMMA) by the antenna metrology lab at the National Institute of Standards and Technology in Boulder Colorado has brought together several important aspects of 6-degree-of-freedom robotic motion, positioning and spatial metrology useful for high frequency antenna characterization. In particular, the ability to define a unified coordinated metrology space, which includes all the motion components of the system is at the heart of this facility. We present the details of integrating robotics that have well defined kinematic models, advanced spatial metrology techniques, and millimeter wave components which make up the CROMMA facility. From this, a high level of precision, accuracy, and traceability that is requisite for performing high frequency near-field antenna pattern measurements can be achieved.  Emphasis is placed on the ability to precisely characterize and model the movement patterns of the robot positioners, and probe and test antenna apertures using state-of-the-art full 6-degree-of-freedom spatial metrology, while being able to manipulate this information in a unified measurement space. The advantages of using a unified coordinated metrology space as they pertain to complex antenna alignments, scan geometry, repeatability analysis, traceability, and uncertainty analysis will be discussed. In addition we will also discuss how the high level of positioning, and orientation knowledge obtainable with the CROMMA facility can enable the implementation of sophisticated near-field position correction algorithms and precisely configurable scan geometries.
Beamforming Filtering for Planar Near-Field Antenna Measurements
Kazeem Yinusa,Raimund Mauermayer, Thomas Eibert, November 2014
It is well known that a field probe acts as a filter for the measured antenna under test (AUT) fields, whose influence can be either described in spatial or in spectral domain. Directive probes, for instance, serve to filter out signals that originate far away from the boresight axis. However, there are several drawbacks to the use of such directive probes including the possibility of multiple reflections and probe nulls. This contribution discusses the application of beamforming techniques to suppress unwanted echo signals in planar near-field antenna measurements. The AUT is measured with a small probe antenna such as is normally used for such measurements. Neighboring measurement signals are thereafter combined in a moving average manner in order to generate the signal as would be measured by a probe array. Successive filter lengths, such as 3x3, 5x5, etc., are utilized such that the valid angle is preserved without extending the measurement plane. The generated near-field signals are then transformed using a flexible plane wave based near-field far-field transformation algorithm. Probe correction does not reverse the reduction in multipath signals achieved by the use of a directive probe or beamforming since sources are assumed only within the minimum sphere enclosing the AUT. Results are presented for simulated data with substantially improved results of the far-field pattern of the AUT.
Dual Polarized Near Field Probe Based on OMJ in Waveguide Technology Achieving More Than Octave Bandwidth
Lars Jacob Foged,Andrea Giacomini, Roberto Morbidini, Vincenzo Schirosi, Sergey Pivnenko, November 2014
In classical probe-corrected spherical near-field measurements, one source of measurement errors, not often given sufficient consideration is the probe [1-3]. Standard near-field to far-field (NFFF) transformation software applies probe correction with the assumption that the probe pattern behaves with a µ=±1 azimuthal dependence. In reality, any physically-realizable probe is just an approximation to this ideal case. Probe excitation errors, finite manufacturing tolerances, and probe interaction with the mounting interface and absorbers are examples of errors that can lead to presence of higher-order spherical modes in the probe pattern [4-5]. This in turn leads to errors in the measurements. Although probe correction techniques for higher-order probes are feasible [6], they are highly demanding in terms of implementation complexity as well as in terms of calibration and post-processing time. Thus, probes with high azimuthal mode purity are generally preferred.   Dual polarized probes for modern high-accuracy measurement systems have strict requirements in terms of pattern shape, polarization purity, return loss and port-to-port isolation. As a desired feature of modern probes the useable bandwidth should exceed that of the antenna under test so that probe mounting and alignment is performed only once during a measurement campaign. Consequently, the probe design is a trade-off between performance requirements and usable bandwidth. High performance, dual polarized probe rely on balanced feeding in the orthomode junction (OMJ) to achieve good performance on a wide, more than octave, bandwidth [5-7]. Excitation errors of the balanced feeding must be minimized to reduce the excitation of higher order spherical modes. Balanced feeding on a wide bandwidth has been mainly realized with external feeding network and the finite accuracy of the external components constitutes the upper limits on the achievable performance.     In this paper, a new OMJ designed entirely in waveguide and capable of covering more than an octave bandwidth will be presented. The excitation purity of the balanced feeding is limited only by the manufacturing accuracy of the waveguide. The paper presents the waveguide based OMJ concept including probe design covering the bandwidth from 18-40GHz using a single and dual apertures. The experimental validation is completed with measurements on the dual aperture probe in the DTU-ESA Spherical Near-Field facility in Denmark.       References: [1]Standard Test Procedures for Antennas, IEEE Std.149-1979 [2]Recommended Practice for Near-Field Antenna Measurements, IEEE 1720-2012 [3]J. E. Hansen (ed.), Spherical Near-Field Antenna Measurements, Peter Peregrinus Ltd., on behalf of IEE, London, UK, 1988 [4]L. J. Foged, A. Giacomini, R. Morbidini, J. Estrada, S. Pivnenko, “Design and experimental verification of Ka-band Near Field probe based on wideband OMJ with minimum higher order spherical mode content”, 34th Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2012, Seattle, Washington, USA [5]L. J. Foged, A. Giacomini, R. Morbidini, “Probe performance limitation due to excitation errors in external beam forming network”, 33rd Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2011, Englewood, Colorado, USA [6]T. Laitinen, S. Pivnenko, J. M. Nielsen, and O. Breinbjerg, “Theory and practice of the FFT/matrix inversion technique for probe-corrected spherical near- eld antenna measurements with high-order probes,” IEEE Trans. Antennas Propag., vol. 58, no. 8, pp. 2623–2631, Aug. 2010. [7]L. J. Foged, A. Giacomini, R. Morbidini, "Wideband dual polarised open-ended waveguide probe", AMTA 2010 Symposium, October, Atlanta, Georgia, USA. [8]L. J. Foged, A. Giacomini, R. Morbidini, “ “Wideband Field Probes for Advanced Measurement Applications”, IEEE COMCAS 2011, 3rd International Conference on Microwaves, Communications, Antennas and Electronic Systems, Tel-Aviv, Israel, November 7-9, 2011.
Dual Polarized Wideband Feed with Cross-Polarization Reduction and Compensation Properties for Compact Antenna Test Range
Lars Jacob Foged,Andrea Giacomini, Antonio Riccardi, Roni Braun, Gennady Pinchuk, Marcel Boumans, Per Olav Iversen, November 2014
In Compact Antenna Test Range (CATR) applications, better cross polar discrimination is often the main motivation for choosing the more complex and expensive compensated dual reflector system as opposed to the simpler and cheaper single reflector system. Other than reflector geometry adjustment, different options have been presented in the literature to improve the cross polar performance of the single reflector CATR [1-4]. One solution is the insertion of a polarization selective grid between the feed and the reflector. The shape of the grids curved strip geometry is determined from the geometry of the reflector and each polarization has a different shape. This approach has been demonstrated to provide Quit Zone (QZ) cross polar performances similar to the dual reflector system on a decade bandwidth. The drawback of this solution is that orthogonal polarizations components cannot be measured simultaneously since a different polarizer grid is required for each polarization [1-2]. Other techniques aim at improving both amplitude/phase taper and cross polarization are based on measurement post processing. Processing techniques have been proposed based on numerical modelling of the range [3] or by de-convoluting the measured pattern with a predetermined range response based on QZ probing [4]. The drawback of these methods are the finite accuracy of the post processing, increased measurement complexity and the difficulty to measure active antenna systems.  Recently, the application of conjugated matched feeds for reflector systems aimed at cross polar reduction in space application have received attention in the literature [5-10]. Recognizing, that the cross polar contribution induced by the offset reflector geometry has a focal plane distribution very similar to the higher order modes in feed horns, various techniques have been devised to excite compensating feed modes. Although a very elegant technique, the achievable bandwidth is limited and only single polarized solutions have been presented. A different concept of conjugated matched excitation, overcoming the dual polarization limitation has been introduced in [11-12] based on a patch array feed system. However, this implementation is aimed at applications with different beam-width in the principle planes.       In this paper we will introduce a new feed horn concept, based on conjugate matched feeding, aiming at cross polar cancellation in single reflectors CATR systems. The proposed feed system is dual polarized and has an operational bandwidth of 1:1.5. The feed concept is introduced and the demonstrator hardware described. The target QZ <40dB cross polar discrimination is demonstrated by QZ probing of a standard single reflector CATR.  References: [1] C. Dragone, "New grids for improved polarization diplexing of microwaves in reflector antennas," Antennas and Propagation, IEEE Transactions on , vol.26, no.3, pp.459-463, May 1978 [2] M.A.J. Griendt, V.J. Vokurka, “Polarization grids for applications in compact antenna test ranges”, 15th Annual Antenna Measurement Techniques Association Symposium, AMTA, October 1993, Dallas, Texas [3] W. D. Burnside, I. J. Gupta, "A method to remove GO taper and cross-polarization errors from compact range scattering measurements," ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), June 1989, San Jose, California [4] D. N. Black and E. B. Joy, “Test zone eld compensation,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 43, no. 4, pp. 362–368, Apr. 1995. [5] K. K. Shee, and W. T. Smith, “Optimizing Multimode Horn Feed Arrays for Offset Reflector Antennas Using a Constrained Minimization Algorithm to Reduce Cross Polarization”, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, No. 12, December 1997, pp. 1883-1885. [6] S. B. Sharma, D. Pujara, Member, S. B. Chakrabarty,r.  Dey, "Cross-Polarization Cancellation in an Offset Parabolic Reflector Antenna Using a Corrugated Matched Feed", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 8, 2009, pp. 861-864. [7] S. B. Sharma, D. A. Pujara, S. B. Chakrabarty, and V. K. Singh, “Improving the Cross-Polar Performance of an Offset Parabolic Reflector Antenna Using a Rectangular Matched Feed”, IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 8, 2009, pp. 513-516. [8] S. K. Sharma, and A. Tuteja, “Investigations on a triple mode waveguide horn capable of providing scanned radiation patterns”, ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), July 11-17, 2010 [9] K. Bahadori, and Y. Rahmat-Samii, “Tri-Mode Horn Feeds Revisited: Cross-Pol Reduction in Compact Offset Reflector Antennas”, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 57, No. 9, September 2009. [10] Z. Allahgholi Pour, and L. Shafai, “A Simplified Feed Model for Investigating the Cross Polarization Reduction in Circular- and Elliptical-Rim Offset Reflector Antennas”, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, No. 3, March 2012, pp. 1261-1268. [11] R. Mizzoni, G. Orlando, and P. Valle, “Unfurlable Reflector SAR Antenna at P-Band”, Proc. of EuCAP 2009, Berlin, Germany. [12] P. Valle, G. Orlando, R. Mizzoni, F. Heliere, K. van ’t Klooster, “P-Band Feedarray for BIOMASS”, Proc. of EuCAP 2012, Prague, Czech Republic.
The Missing Link between Numerical Simulation and Antenna Measurements with Application to Flush Mounted Antennas
Lars Jacob Foged,Lucia Scialacqua, Francesco Saccardi, Francesca Mioc, Davide Tallini, Emmanuel Leroux, Ulrich ?Becker, Javier Leonardo Araque Quijano, Giuseppe Vecchi, November 2014
Numerical modeling within Computational Electromagnetics (CEM) solvers is an important engineering tool for supporting the evaluation and optimization of antenna placement on larger complex platforms. While measurements are still required for final validation due to the conclusiveness and high reliability of measured data, numerical modeling is increasingly used in the initial stages of antenna placement investigation, optimization and to ensure that final testing, often a complex procedure, has a positive outcome. In some cases, the full-wave representation of the source antenna is unavailable to the designer in the format required by the CEM solver. This is often the case if the source antenna is from a third party. To overcome this problem, an equivalent computational model of the antenna must be constructed, bearing in mind that CEM solvers require an accurate source representation to achieve reliable results. Equivalent sources or currents implemented in the commercial tool INSIGHT have been adopted as an efficient diagnostics and echo reduction tool in general antenna measurement scenarios as discussed in [1-6]. The INSIGHT processing of measured antenna data was initially developed as a numerical representation of antennas in complex environment analysis for CEM solvers [7-10]. The main obstacle for widespread use of this method was the handling of the proprietary format of the equivalent currents. Commercial CEM providers are currently investigating and implementing domain decomposition techniques based on the near field description of the local domain. This development also provides a direct link between INSIGHT processing of measured antenna data and numerical simulation opening a range of interesting applications for using measured antennas in commercial numerical simulation tools as discussed in [11-12]. In flush-mounted antenna applications the measurement and subsequent INSIGHT processing has to be carefully performed. This paper discusses guidelines for the correct source antenna measurement, post processing and successive link to the commercial numerical tools for simulation. Application examples of the link using CST STUDIO SUITE® software [14-17] with flush mounted antennas and comparison with measurements of the full structure will be provided.  [1] [2]     J. L. Araque Quijano, G. Vecchi. Improved accuracy source reconstruction on arbitrary 3-D surfaces. Antennas and Wireless Propagation Letters, IEEE, 8:1046–1049, 2009. [3]     J. L. A. Quijano, G. Vecchi, L. Li, M. Sabbadini, L. Scialacqua, B. Bencivenga, F. Mioc, L. J. Foged "3D spatial filtering applications in spherical near field antenna measurements", AMTA 2010 Symposium, October, Atlanta, Georgia, USA. [4]     L. Scialacqua, F. Saccardi, L. J. Foged, J. L. Araque Quijano, G. Vecchi, M. Sabbadini, “Practical Application of the Equivalent Source Method as an Antenna Diagnostics Tool”, AMTA Symposium, October 2011, Englewood, Colorado, USA [5]     J. L. Araque Quijano, L. Scialacqua, J. Zackrisson, L. J. Foged, M. Sabbadini, G. Vecchi “Suppression of undesired radiated fields based on equivalent currents reconstruction from measured data”, IEEE Antenna and wireless propagation letters, vol. 10, 2011 p314-317. [6]     L. J. Foged, L. Scialacqua, F. Mioc,F. Saccardi, P. O. Iversen, L. Shmidov, R. Braun, J. L. Araque Quijano, G. Vecchi" Echo Suppresion by Spatial Filtering Techniques in Advanced Planar and Spherical NF Antenna Measurements ", AMTA Symposium, October 2012, Seattle, Washington, USA [7]     E. Di Giampaolo, F. Mioc, M. Sabbadini, F. Bardati, G. Marrocco, J. Monclard , L. Foged, “Numerical modeling using fast antenna measurements”, 28th ESA Antenna Workshop on Space Antenna Systems and Technologies, June 2005 [8]     L. J. Foged, F. Mioc, B. Bencivenga, E. Di Giampaolo, M. Sabbadini “High frequency numerical modeling using measured sources”, IEEE Antennas and Propagation Society International Symposium, July 9-14, 2006. [9]     F. Mioc, J. Araque Quijano, G. Vecchi, E. Martini, F. Milani, R. Guidi, L. J. Foged, M. Sabbadini, “Source Modelling and Pattern Enhancement for Antenna Farm Analysis”, 30th ESA Antenna Workshop on Antennas for Earth Observation, Science, Telecommunication and Navigation Space Missions, May 2008 ESA/ESTEC Noordwijk, The Netherlands [10]  L. J. Foged, B. Bencivenga, F. Saccardi, L. Scialacqua, F. Mioc, G. Arcidiacono, M. Sabbadini, S. Filippone, E. di Giampaolo, “Characterisation of small Antennas on Electrically Large Structures using Measured Sources and Advanced Numerical Modelling”, 35th Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2013, Columbus, Ohio, USA [11]  L. J. Foged, L. Scialacqua, F. Saccardi, F. Mioc, D. Tallini, E. Leroux, U. Becker, J. L. Araque Quijano, G. Vecchi, “Bringing Numerical Simulation and Antenna Measurements Together”, 8th European Conference on Antennas and Propagation, EuCAP, April 2014, Den Haag, Netherlands [12]  L. J. Foged, L. Scialacqua, F. Saccardi, F. Mioc, D. Tallini, E. Leroux, U. Becker, J. L. Araque Quijano, G. Vecchi “Innovative Representation of Antenna Measured Sources for Numerical Simulations”, IEEE International Symposium on Antennas and Propagation and USNC/URSI, July 2014, Memphis, Tennese, USA [13]  L. J. Foged, B. Bencivenga, F. Saccardi, L. Scialacqua, F. Mioc, G. Arcidiacono, M. Sabbadini, S. Filippone, E. di Giampaolo, “Characterisation of small Antennas on Electrically Large Structures using Measured Sources and Advanced Numerical Modelling”, 35th Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2013, Columbus, Ohio, USA [14]  CST STUDIO SUITE™, CST AG, Germany, [15]  T. Weiland: "RF & Microwave Simulators - From Component to System Design" Proceedings of the European Microwave Week (EUMW 2003), München, Oktober 2003, Vol. 2, pp. 591 - 596. [16]  B. Krietenstein, R. Schuhmann, P. Thoma, T. Weiland: "The Perfect Boundary Approximation Technique facing the big challenge of High Precision Field Computation" Proc. of the XIX International Linear Accelerator Conference (LINAC 98), Chicago, USA, 1998, pp. 860-862. [17]  D. Reinecke, P. Thoma, T. Weiland: "Treatment of thin, arbitrary curved PEC sheets with FDTD" IEEE Antennas and Propagation, Salt Lake City, USA, 2000, p. 26.
Verification of Complex Excitation Coefficients from Measured Space Array Antenna by the Equivalent Current Technique
Luca Salghetti Drioli,Lars Jacob Foged, Lucia Scialacqua, Francesco Saccardi, November 2014
In this paper the inverse-source technique or source reconstruction technique has been applied as diagnostic tool to determine the complex excitation at sub array and single element level of a measured array antenna [1-5]. The inverse-source technique, implemented in the commercially available tool “INSIGHT” [5], allows to compute equivalent electric and magnetic currents providing exclusive diagnostic information about the measured antenna. By additional processing of the equivalent currents the user can gain insight to the realized excitation law at single element and sub-array level to identify possible errors. The array investigated in this paper is intended as part of the European Navigation System GALILEO and is a pre-development model flying on the In-Orbit Validation Element the GIOVE-B satellite. The antenna, developed by EADS-CASA Espacio, consists of 42 patch elements, divided into six sectors and is fed by a two level beam forming network (BFN). The BFN provide complex excitation coefficients of each array element to obtain the desired iso-flux shaped beam pattern [6-7]. The measurements have been performed in the new hybrid (Near Field and Compact Range) facility in the ESTEC CPTR as part of the installation and validation procedure [8]. The investigation has been performed without any prior information of the array and intended excitation. The input data for the analysis is the measured spherical NF data and the array topology and reference coordinate system. References [1]     J. L. Araque Quijano, G. Vecchi. Improved accuracy source reconstruction on arbitrary 3-D surfaces. Antennas and Wireless Propagation Letters, IEEE, 8:1046–1049, 2009. [2]     L. Scialacqua, F. Saccardi, L. J. Foged, J. L. Araque Quijano, G. Vecchi, M. Sabbadini, “Practical Application of the Equivalent Source Method as an Antenna Diagnostics Tool”,  AMTA Symposium, October 2011, Englewood, Colorado, USA [3]     J. L. Araque Quijano, L. Scialacqua, J. Zackrisson, L. J. Foged, M. Sabbadini, G. Vecchi “Suppression of undesired radiated fields based on equivalent currents reconstruction from measured data”, IEEE Antenna and wireless propagation letters, vol. 10, 2011 p314-317. [4]     L. J. Foged, L. Scialacqua, F. Mioc,F. Saccardi, P. O. Iversen, L. Shmidov, R. Braun, J. L. Araque Quijano, G. Vecchi " Echo Suppresion by Spatial Filtering Techniques in Advanced Planar and Spherical NF Antenna Measurements ", AMTA Symposium, October 2012, Seattle, Washington, USA [5] [6]     A. Montesano, F. Monjas, L.E. Cuesta, A. Olea, “GALILEO System Navigation Antenna for Global Positioning”, 28th ESA Antenna Workshop on Space [7]     L.S. Drioli, C. Mangenot, “Microwave holography as a diagnostic tools: an application to the galileo navigation antenna”, 30th Annual Antenna Measurement Techniques Association Symposium, AMTA 2008, Boston, Massachusetts November 2008 [8]     S. Burgos, M. Boumans, P. O. Iversen, C. Veiglhuber, U. Wagner, P. Miller, “Hybrid test range in the ESTEC compact payload test range”, 35th ESA Antenna Workshop on Antenna and Free Space RF Measurements ESA/ESTEC, The Netherlands, September 2013
Quiet Zone Analysis Using Spherical Near-Field Scanning Measurements
Marc Dirix,Dirk Heberling, November 2014
Fieldprobing is often the tool of choice for validating the characteristics of a quiet zone (QZ). Some of the main disadvantageous of fieldprobing are the expense and stability of the setup, e.g. a stable non-reflective linear axis has to be build. Furthermore regular 1-dimensional fieldprobing is not very suited for detecting extraneous reflections in the measurement chamber. Former work has shown that using a second linear axis below the AUT positioner (which is sometimes present for Antenna Pattern Comparison (APC) measurements) can improve the detection, but further increases the cost factor. Using Spherical Near-Field scanning [FRANCIS,WITTMANN,BLACK,JOY] most of these disadvantageous are solved, only a rather simple, although sturdy, beam is built on top of the roll-over-azimuth positioner, placing the antenna on a sphere surrounding the QZ. Using only one measurement, for each frequency, a complete analysis of the measurement chamber can be performed. It can be used for both looking inside the QZ, i.e. chamber reflectivity and outside on extraneous reflections. This paper will show both actual spherical near-field and fieldprobing measurements of the CATR at the Institute of High Frequency Technology (IHF) of the RWTH Aachen, and compare both results.
Improved Bandwidth in Rectangular Waveguide Material Characterization Measurements
Michael Havrilla,Andrew Bogle, Milo Hyde, November 2014
Traditional rectangular waveguide measurements are operated in the frequency regime of the dominant TE10 mode.  The general guideline for determining the dominant mode frequency regime is to operate 25% above the TE10 mode cutoff to avoid high dispersion and 5% below the TE20 cutoff to avoid higher-order mode excitation.  The X-band waveguide for example, with cross-sectional dimensions 0.9 inches by 0.4 inches, has a TE10 and TE20 cutoff frequency of 6.56 and 13.12 GHz, respectively.  Using the above guideline, the approximate bandwidth of operation is 8.2-12.4 GHz.  In addition, coax-to-waveguide adapters must be employed in order to connect the network analyzer coaxial cables to the rectangular waveguide sections.  In modern (i.e., commercially off the shelf - COTS) microwave coax-to-waveguide adapters, tuning stubs are employed to minimize voltage standing wave ratio and thus maximize energy coupling into the waveguide sections.  Unfortunately, these tuning stubs are placed in asymmetric patterns that can cause coupling into the TE20 mode, which is the very reason why one must operate at a frequency of at least 5% below this mode to safely avoid higher-order mode contamination.  The goal here is to show that, by designing symmetric coax-to-waveguide adapters, excitation of the TE20 mode can be avoided for operational frequencies above the TE20 cutoff.  Thus, the frequency of operation may be extended to the TE11 mode (the next higher-order mode that can exist) having a cutoff frequency of 16.16 GHz.  Consequently, the operational frequency band is enhanced from 8.2-12.4 GHz to 8.2-15.4 GHz, representing a 70% improvement in operational bandwidth.  A comparison of newly-designed symmetric and COTS asymmetric coax-to-waveguide adapters for material characterization measurements will be provided and advantages/limitations will be discussed.
Antenna Measurement Concept Exploiting Echoes Based on Frequency Diversity
Mouad Djedidi,Florian Monsef, Andrea Cozza, November 2014
Current antenna measurement techniques are based on the underlying idea that echoes generated by nearby structures should be avoided. Indeed, the absence of echoes allows a precise measurement of the line-of-sight radiation of the antenna under test (AUT), via mechanical rotation to span some or all spatial directions until the radiation pattern is formed. In this paper, this idea is challenged by introducing an alternative test approach that generates controlled echoes and use them as a useful source of information. Preliminary results are presented and it is shown how frequency diversity can be fruitfully used to retrieve the free space radiation pattern. A special care is given to the conditioning of the mathematical problem. Accordingly, it is shown how the different parameters involved in the set-up influence the feasibility of the technique. The proposed technique is expected to lead to a faster characterization of the AUT, as the need for mechanical rotation is cut down.
Combining Pattern, Polarization and Channel Balance Correction Routines to Improve the Performance of Broad Band, Dual Polarized Probes
Patrick Pelland,Allen Newell, November 2014
Broad band, dual polarized probes are becoming increasingly popular options for use in near-field antenna measurements. These probes allow one to reduce cost and setup time by replacing several narrowband probes like open-ended waveguides (OEWG) with a single device covering multiple waveguide bands. These probes are also ideal for production environments, where chamber throughput should be maximized. Unfortunately, these broadband probes have some disadvantages that must be quantified and corrected for in order to make them viable for high accuracy near-field measurements. Most of these broadband probes do not have low cross polarization levels across their full operating bandwidths and may also have undesirable artifacts in the main component of their patterns at some frequencies. Both of these factors will result in measurement errors when used as probes. Furthermore, the use of a dual port RF switch adds an additional level of uncertainty in the form of port-to-port channel balance errors that must be accounted for. This paper will describe procedures to calibrate the pattern and polarization properties of broad band, dual polarized probes with an emphasis on a newly developed polarization correction algorithm. A simple procedure to measure and correct for amplitude and phase imbalance entering the two ports of the near-field probe will also be presented. Measured results of the three calibration procedures (pattern, polarization, channel balance) will be presented for a dual-polarized, broad band quad-ridged horn antenna. Once calibrated, this probe was used to measure a standard gain horn (SGH) and will be compared to baseline measurements acquired using a good polarization standard open-ended waveguide (OEWG). Results with and without the various calibration algorithms will illustrate the advantage to using all three routines to yield high accuracy far-field pattern data.
Indoor RCS measurement facilities ARCHE 3D: Influence of the target supporting mast in RCS measurement
Pierre Massaloux, November 2014
Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern. In order to perform more complete characterizations, a spherical experimental layout has been developed at CEA for indoor Near Field monostatic RCS assessment. This experimental layout is composed of a 4 meters radius motorized rotating arch (horizontal axis) holding the measurement antennas while the target is located on a mast (polystyrene or Plexiglas) mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allows full 3D near field monostatic RCS characterization. This paper investigates the influence of the material of the mast supporting the target under test. Across several measurement steps, we compare different RCS measurement results of canonical targets in order to eliminate the unwanted RCS measurement contribution due to the mast. The aim is to find out the mast which disturbs the least the RCS of the target under test but still compatible with the measurement facility ARCHE 3D. All these measurements are also compared to Near Field and Far Field calculations taking into account the material of the supporting mast.
Field Synthesis Using Multilevel Plane Wave Based Field Transformation
Raimund Mauermayer,Thomas Eibert, November 2014
The synthesis of a specific field distribution in a certain volume with a given set of sources is an issue which arises in acoustics as well as in electromagnetics. Field Synthesis is of increasing interest for over the air (OTA) testing of multiple input multiple output (MIMO) based communication devices as arbitrary multipath communication channels can be simulated synthesizing the corresponding field distribution around the device under test (DUT). Plane-wave Field Synthesis methods have already been applied to improve the quality and extents of the quiet zone region of compact antenna test ranges (CATR). Furthermore, by synthesizing a plane wave field in a test region for an antenna under test (AUT), using an array of probe antennas in its near-field region, near-field far-field transformations (NFFFT) can be performed. Since there exists a variety of important applications for electromagnetic Field Synthesis, a Field Synthesis approach with high flexibility and low computational complexity is presented in this contribution. Usually, depending on the application, a single moving probe antenna or an array of probe antennas is used to synthesize a desired field distribution in the test zone volume where the DUT will be placed. The challenge is to determine appropriate excitation signals for the individual probe antennas. For that purpose an equation system is iteratively solved which arises from the boundary condition for the tangential field components on the surface of the test volume. As a consequence of the uniqueness theorem, equality of the desired and synthesized tangential field components induces that the desired and synthesized field distribution are identical in the source free test volume. Field testing on the surface of the test volume is performed by vector testing functions defined on a triangular mesh of the test zone surface enabling field synthesis in arbitrarily shaped test volumes. For accelerated evaluation of the coupling between probe antennas and vector testing functions, principles of the fast multipole method (FMM) are adopted. The implied plane wave expansions enables to incorporate the radiation characteristic of the probe antenna sources just by directly employing its plane wave spectrum representation which is nothing else but its far-field pattern. Additionally, the multilevel approach minimizes the number of translation operations between source and receiver boxes organized in a hierarchical oct-tree. Altogether the approach is applicable to arbitrarily shaped test volumes and arbitrarily arranged probe antennas and still shows a linearithmic complexity. In this contribution, detailed insight in the Field Synthesis method is given. Results for synthesized field distributions for arbitrarily shaped test volumes are presented. Finally the application of plane-wave Field Synthesis to NFFFT is shown for synthetic as well as for real near-field antenna measurement data.
Revising the Relationships between Phase Error and Signal-to-Noise Ratio
Ryan Cutshall,Jason Jerauld, November 2014
Within RF measurement systems, engineers commonly wish to know how much phase ripple will be present in a signal based on a given signal-to-noise ratio (SNR). In a past AMTA paper (Measurement Considerations for Antenna Pattern Accuracy, AMTA 1997), John Swanstrom presented an equation which demonstrated how the bound on the phase error could be calculated from the peak SNR value. However, it can be shown that the Swanstrom bound is broken when the signal has a peak SNR value of less than approximately 15 dB. This paper introduces a new equation that bounds the maximum phase error of a signal based on the signal’s peak SNR value. The derivation of this new bound is presented, and comparisons are made between the old Swanstrom bound and the new bound. In addition, the inverse relationship (i.e., calculating the SNR value of a signal from phase-only measurements) is investigated. In the past, analytical equations for this relationship have been presented by authors such as Robert Dybdal (Coherent RF Error Statistics in IEEE Trans. on Microwave Theory and Techniques) and Jim P.Y. Lee (I/Q Demodulation of Radar Signals with Calibration and Filtering in a Defense Research Establishment Ottawa publication). The analytical equations for calculating the SNR value using phase-only measurements are reviewed and discussed, and a brand new numerical relationship based on a polynomial curve fitting technique is proposed.
Scaled Model Measurements of HF Antenna for Vehicular Platforms
Saurabh Sanghai,Maxim Ignatenko, Kim Hassett, Dejan Filipovic, November 2014
Electrically small antennas present tremendous design challenges. Plagued with a small radiation resistance and high quality factor (thus narrow bandwidth), these types of antennas are difficult to accurately measure.  For use in HF communication applications, the problems associated with the entire development cycle become even more pronounced. This paper focuses on the development of two such electrically small HF antennas for a vehicular platform, specifically the Amphibious Assault Vehicle (AAV). The primary design objective is to develop antennas that operate over the entire near-vertical incidence (NVIS) band (2 – 10 MHz) with a minimum of 3kHz bandwidth. Additional design objectives are low profile, broadside directive pattern, and high power handling capability. The inverted L antenna and the half loop antenna were selected as probable candidates for this application. At 2 MHz, the antenna – vehicle system fits within the envelope ka < 0.2, where k is the free space wave number and a is the radius of a sphere completely enclosing the radiator. The full scale antenna design and performance were evaluated using method of moments and finite element method codes FEKO and HFSS respectfully. It is observed that the presence of the real ground plane poses a serious challenge for well established modeling techniques and considerable care must be exercised to obtain credible design data. For measurement validation and characterization of the antenna/vehicle interaction, a set of scaled antenna and vehicle prototypes were developed. Rapid prototyping and 3D printing were employed to build a scaled model (1:50 scale) of the complete antenna – vehicle system. The step-by-step process from the computational model to the measurement validation is discussed along with the description of the adopted fabrication techniques. In the concluding section of the paper, the measured results from the scaled model are presented alongside the simulated results. The good agreement between these results paves the way towards the successful use of such scaled model testing for more complicated antenna designs in the future.
Smart Plasma Antennas
Theodore Anderson, November 2014
One design of a smart plasma antenna is to surround a plasma or metal antenna by a plasma blanket in which the plasma density can be varied. In regions where the plasma frequency is much less than the antenna frequency, the antenna radiation passes through as if a window exists in the plasma blanket. In regions where the plasma frequency is high the plasma behaves like a perfect reflector with a reactive skin depth. Hence by opening and closing a sequence of these plasma windows this design can be computerized to electronically steer or direct the antenna beam into any and all directions. The plasma windowing design is one approach to the smart plasma antenna design. The beamwidth can vary from an omnidirectional radiation pattern with all the plasma windows open or a very directional radiation pattern when only one plasma window is open. The advantages of the plasma blanket windowing design are: 1. Beam steering of one omnidirection antenna with the plasma physics of plasma windowing. 2. A reconfiguable directivity. 3. The beamwidth can vary from an omnidirectional radiation pattern with all the plasma windows open to a directional radiation pattern with less than all the plasma windows open.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.