AMTA Paper Archive

 

Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)

 

Search AMTA Paper Archive
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Pattern
Characterization Of Dual-Band Circularly Polarized Active Electronically Scanned Arrays (AESA) Using Electro-Optic Field Probes
Kazem Sabet, Richard Darragh, Ali Sabet, Sean Hatch, November 2016
Electro-optic (EO) probes provide an ultra-wideband, high-resolution, non-invasive technique for polarimetric near-field scanning of antennas and phased arrays. Unlike conventional near field scanning systems which typically involve metallic components, the small footprint all-dielectric EO probes can get extremely close to an RF device under test (DUT) without perturbing its fields. In this paper, we discuss and present measurement results for EO field mapping of a dual-band circularly polarized active phased array that operates at two different S and C bands: 2.1GHz and 4.8GHz. The array uses probe-fed, cross-shaped, patch antenna elements at the S-band and dual-slot-fed rectangular patch elements at the C-band. At each frequency band, the array works both as transmitting and receiving antennas. The antenna elements have been configured as scalable array tiles that are arranged together to create larger apertures. Near-field scan maps and far-field radiation patterns of the dual-band active phased array will be presented at the bore sight and at different scan angles and the results will be validated with simulation data and measurement results from an anechoic chamber.
Precise Determination of Phase Centers and Its Application to Gain Measurement of Spacecraft-borne Antennas in an Anechoic Chamber
Yuzo Tamaki, Takehiko Kobayashi, Atsushi Tomiki, November 2016
Precise determination of antenna phase centers is crucial to reduce the uncertainty in gain when employing the three-antenna method, particularly operated over a short range-such as a 3-m radio anechoic chamber, where the distance between the phase centers and the open ends of an aperture antenna (the most commonly-used reference) is not negligible, compared with the propagation distance. An automatic system to determine the phase centers of aperture antennas in a radio anechoic chamber has been developed and the absolute gain of horn antennas have been thereby evaluated with the three-antenna method. The phase center of an X-band horn was found to migrate up to 55 mm from the open end. Uncertainties in the gain were evaluated in accordance with ISO/IEC Guide 93-3: 2008. The 95% confidence interval of the horn antenna gain was reduced from 0.39 to 0.25 dB, when using the phase center location instead of the open end. Then the gains, polarization, and radiation pattern of space-borne antennas were measured: low-, medium-, and high-gain X-band antennas for an ultra small deep space probe employing the polarization pattern method with use of the horn antenna. Comparison between the radiation properties with and without the effect of spacecraft bus was carried out for low-gain antennas. The 95% confidence interval in the antenna gain decreased from 0.60 to 0.39 dB.
Automotive Antenna Evaluation
Garth D'Abreu, November 2016
The automotive industry is changing rapidly through the evolution of on board and embedded components and systems. Many of these systems rely on the over the air performance of a communication link and the evaluation of these links is a key requirement in understanding both the real world performance, and associated operating limits of a particular system. The operating frequency range of the installed communication systems now extends from the traditional AM bands from 540KHz to almost 6GHz for WiFi. There are several different antenna design options available to cover this range and in many cases, the performance of an antenna when installed on a vehicle differs from a measurement of the same antenna in isolation. There is also a growing use of high frequency RADAR systems operating at frequencies approaching 80GHz that also need to be included in the performance analysis. The behavior of the individual components using conducted methods for example, is an important step but the direct measurement of antenna pattern and data throughput under ideal steady state and also varying spatial and operating conditions is likely to be the most robust method of channel evaluation. There is a steady march toward vehicle autonomy that is pushing the development of increasingly complex and sophisticated sensors, receivers, transmitters and firmware, all installed on an already well populated platform. The interoperability and EMC performance of these embedded systems is an extension to the need for a fundamental understanding of performance. This paper will present some of the available measurement and evaluation options that could be used as part of an integrated test environment which takes advantages of a number of established techniques.
Measurement Uncertainties in Millimeter Wave “On-Chip” Antenna Measurements
Edward Szpindor, Wenji Zhang, Per Iversen, November 2016
As a result of recent technical and regulatory developments, the millimeter wave frequency band (30GHz – 300 GHz) is being adopted for wide range of applications.  Based on array signal processing technologies used for 4G and MIMO, companies are developing small active array antennas operating throughout the millimeter-wave bands.  These arrays may include radiating elements and feed structures that are fraction of a millimeter in size and cannot be fed via a coaxial cable.  Connection to the antenna is instead performed through a micro-probe more commonly used in the chip industry.  MVG-Orbit/FR has developed a compact antenna measurement system which integrates hardware and software necessary to provide antenna gain and radiation patterns of antennas fed with such a micro-probe. To evaluate uncertainties in the measurements of the Antenna Under Test (AUT) gain, directivity, efficiency, pattern, or VSWR, reference antennas are an invaluable tool.  The authors have recently driven the development of a micro-probed chip reference antenna.  This reference antenna was designed to be mechanically and electrically stable and with reduced sensitive to its mounting fixture and feeding method.  Close agreement between measured and simulated characteristics has been achieved.  With low losses, the antenna provides good dynamic range and confidence in the measured antenna efficiency and gain. Without chip antenna gain standards, a micro-probed antenna test system requires the use of the insertion loss method for gain calibration.  This method requires correction for additional losses such as cables, attenuators, or adaptors that are included in the calibration but not in the subsequent measurement of the AUT.  In addition, the micro-probe (which is in the measurement but not in the calibration) should be calibrated and de-embedded from the measurement.   Each of these measurements and associated connections and related processing, increases uncertainty and chance of mistakes by the user.  It is therefore essential to validate the calibration using a well characterized reference antenna. This paper will outline design requirements and present test results of 60 GHz Chip Reference antennas.  Several dozen antennas have been tested.  The related uncertainties in the micro-probed antenna measurements will be evaluated with particular emphasis on the gain calibration uncertainty.  The paper will also describe the next steps towards developing a chip antenna gain standard, that should reduce gain uncertainties while also significantly simplifying the calibration process.
Correction of Non-ideal Probe Orientations for Spherical Near-Field Antenna Measurements
Rasmus Cornelius, Dirk Heberling, October 2017
Positioning in near-field antenna measurements is crucial and often an absolute position accuracy of ?\50 is required. This can be difficult to achieve in practice, e.g. for robotic arm measurement systems and/or high frequencies. Therefore, optical measurement devices are used to precisely measure the position and orientation. The information can be used to correct the position and orientation during the measurement or in the near-field to far-field transformation. The latter has the benefit that the measurement acquisition is typically faster because no additional correction movements are needed. Different methods for correction of non-ideal measurement positions in r, ? and f have been presented in the past. However, often not only the relative position but also the orientation between the antenna under test (AUT) and the probe coordinate system is not perfect. So far, correction and investigation of the related non-ideal probe orientations has been neglected due to the assumption that the probe receiving pattern is broad. In this paper, non-ideal probe orientations will be investigated and a spherical wave expansion procedure which corrects non-ideal probe orientations and positions will be presented. This is achieved by including an arbitrary probe pointing in the probe response calculation by additional Euler rotations of the probe receiving coefficients. The introduced pointwise higher-order probe correction scheme allows an exact spherical wave expansion of the radiated AUT field. The transformation is based on solving a system of linear equations and, thus, has a higher complexity compared to Fourier-based methods. However, it will be shown that most of the calculations can be precomputed during the acquisition and that solving the linear equation system can be accelerated by using iterative techniques such as the conjugate gradient method. The applicability of the proposed method is demonstrated by measurements where an intentional misalignment is introduced. Furthermore, the method can be used to include full probe correction in the translated spherical wave expansion algorithm. In conclusion, the proposed procedure is a beneficial extension of spherical wave expansion methods and can be applied in different measurement scenarios.
Analysis of Time and Direction of Arrival (TADOA) Data using Basis Pursuit in the AFRL One-RY Antenna Measurement Range
Brian Fischer, Ivan LaHaie, Michael Blischke, Brian Kent, Brittany Wells, James Stewart, October 2017
Time and Direction of Arrival (TADOA) analysis of field probe data has been an accepted method for characterizing stray signals in an antenna measurement range for many years ([1], [2]). Recent uncertainty investigations at the OneRY range have shown a need for increased resolution to isolate and characterize energy in TADOA images so that resources can be carefully applied to reduce the uncertainty from these stray signals. This is accomplished by modeling the TADAO image as the solution to a Basis Pursuit (BP) l1 minimization problem. This paper outlines the model development and shows concrete examples from OneRY field probe data where BP allows for the identification of stray energy which was previously difficult to find. We also show how the BP optimization context can be using to remove contamination from the data through the inclusion of additional basis functions ([3]). I.J. Gupta, E.K. Walton, W.D. Burnside, “Time and Direction of Arrival Estimation of Stray Signals in a RCS/Antenna Range,” Proc. of 18th Annual Meeting of the Antenna Measurement Techniques Association (AMTA '96), Seattle WA, September 30-October 3, 1996, pp. 411-416. I.J. Gupta, T.D. Moore, “Time Domain Processing of Range Probe Data for Stray Signal Analysis,” Proc. of 21st Annual Meeting of the Antenna Measurement Techniques Association (AMTA '99), Monterey Bay CA, October 4-8, 1999, pp. 213-218. B.E. Fischer, I.J. LaHaie, M.H. Hawks, T. Conn, “On the use of Basis Pursuit and a Forward Operator Dictionary to Separate Specific Background Types from Target RCS Data,” Proc. of 36th Annual Meeting of the Antenna Measurement Techniques Association (AMTA '14), Tucson AZ, October 12-17, 2014, pp. 85-90.
Determination of the Far-Field Radiation Pattern of a Vehicle Mounted VHF Antenna From a Set of Sparse Near-Field Measurements
Scott Kordella, Kenneth Grimm, October 2017
The paper summarizes the performance of a new near-field to far-field (NF/FF) transform approach for a VHF vehicle mounted AUT test case, and compares the approach with the spherical measurement approach. The NF/FF transformation is based on the solution of an inverse problem in which the measured NF and predicted FF values are attributed to a set of equivalent electric and magnetic surface currents which lie on a convex arbitrary surface that is conformal to the antenna under test (AUT). The NF points are conformal to the AUT, reducing the number of samples and relaxing positioning requirements used in conventional spherical, NF/FF geometries. A pseudo inversion of the matrix representing the mapping of the equivalent sources into the near-field samples is obtained by using the singular value decomposition (SVD), which is used to form an approximation of the inverse of the matrix. This inverse, when multiplied by the NF measurement vector, solves for the efficiently radiating components of the current, which are used to compute the FF in a straightforward manner. Keywords—Antenna Near-Field to Far-Field Transformation, Electromagnetic Inverse Problems.
Nearfield Antenna Measurements over Seawater – Some Preliminary Thoughts
David Tonn, October 2017
The principles of near-field antenna measurements and scanning in Cartesian and spherical coordinates are well established and documented in the literature, and in standards used on antenna ranges throughout government, industry, and academic applications. However the measurement methods used and the mathematics that are applied to compute the gain and radiation of the pattern of the test antenna from the near-field data assume typically that the antenna is operating in free space. This leaves several questions open when dealing with antennas operating over a lossy ground plane, such as the ocean damp soil, etc. In this paper, we shall discuss some of the motivation behind an examination of the physics and mathematics involved in performing a near-field antenna measurement over a seawater ground plane. Examples of past work in this are shall be discussed along with some of the challenges of performing far field antenna measurements in the presence of the air-sea interface. These discussions lead to some fundamental questions about how one defines gain in this environment and whether or not a near field approach could be beneficial. This will lead to some discussion of when and how the existing modal field expansions used in near-field measurements may need to be adjusted to account for the presence of the ground plane created by the ocean surface. An example of the limiting case of an antenna operating over a metallic ground plane will be discussed as a stepping stone to the more general problem of an antenna operating over a lossy ground plane.
Assessment of a 3D-Printed Aluminum Corrugated Feed Horn at 118.7503 GHz
Joshua Gordon, Lavanya Periasami, Albin Gasiewski, David Novotny, Michael Francis, Ronald Wittmann, Jeffrey Guerrieri, October 2017
We investigate all-metal 3D printing as a viable option for millimeter wave applications. 3D printing is finding applications across many areas and may be a useful technology for antenna fabrication. The ability to rapidly fabricate custom antenna geometries may also help improve cub satellite prototyping and development time. However, the quality of an antenna produced using 3D printing must be considered if this technology can be relied upon. Here we investigate a corrugated feed horn that is fabricated using the powder bead fusion process for use in the PolarCube cube satellite radiometer. AlSi10Mg alloy is laser fused to build up the feed horn, including the corrugated structure on the inner surface of the horn. The intricate corrugations, and tilted waveguide feed transition of this horn made 3D printing a compelling and interesting process to explore. We will discuss the fabrication process and present measurement data at 118.7503 GHz. Gain extrapolation and far-field pattern results obtained with the NIST robotic antenna range CROMMA are presented. Far-field pattern data were obtained from a spherical near-field scan over the front hemisphere of the feed horn. The quasi-Gaussian HE11 hybrid mode supported by this antenna results in very low side lobe levels which poses challenges for obtaining good SNR at large zenith angle during spherical near field measurements. This was addressed through using a single alignment and electrical calibration while autonomously changing between extrapolation and near-field measurements using the robotic arm in CROMMA. The consistency in parameters between extrapolation and near-field measurements allowed the extrapolation data to be used in-situ as a diagnostic. Optimal near-field scan radius was determined by observing the reflection coefficient S11 during the extrapolation measurement. The feed horn-to-probe antenna separation for which |S11| was reduced to 0.1 dB peak-to-peak was taken as the optimal near-field scan radius for the highest measurement SNR. A comparison of these measurements to theoretical predictions is presented which provides an assessment of the performance of the feed horn.
Accuracy Enhancement of Ground Reflection Range Measurements Using a Two-Element Array Source Antenna
Artem Saakian, Frederick Werrell, October 2017
One of the sources of the measurement errors in outdoor antenna test ranges, when testing from VHF through C-Band, is the ground reflected signal between probe antenna and the antenna under test (AUT). Those errors are due to antenna(s) relatively large beam width(s) at these frequencies, especially when AUT is placed on the large platform such as an aircraft. If reflected wave is not eliminated by the use of absorbers at the reflection point or redirection by the use of diffraction fences, then the range operates as a ground reflection range (GRR), where the reflected signal creates a lobbing pattern when the direct and reflected signals are overlaying in- and out-of-phase as a function of position and frequency, causing undesirable amplitude variations at the test point. Ground reflections may be a major cause of error for GRR measurements when testing large antennas or antennas mounted on large structures which require a large displacement of the AUT during the antenna pattern collection process. A concept of using vertically positioned two-element array probe antenna (source antenna) to suppress ground-reflected signals in GRR-s is presented in this article. Suppression is achieved by pointing first null of the probes gain pattern towards the reflection point on the ground. All analytical evaluations are based on geometrical optics approach. Comparison of the proposed approach to a traditional single-element probe (source) antenna approach, demonstrates a significant improvement in measurement accuracy. Estimates and verifications of analytical evaluations are based on Computational Electromagnetics (CEM) modeling tool such as WIPL-D code. Simulations are performed in the VHF frequency band (200 MHz).
A Cylindrical Reconfigurable Antenna Technology with Full Hemispherical Coverage
Gregory Kiesel, Efstrateos Strates, October 2017
Reconfigurable antennas provide the ability to electronically change the antenna’s performance, which allows the antenna’s band of operation and gain pattern to be rapidly adapted to meet system requirements. A cylindrical, conformal reconfigurable antenna is presented which tunes over a wide band and provides full 360° azimuth coverage. The antenna maintains a realized gain (with mismatch and loss) better than a dipole from 800 MHz to 3 GHz, using the antenna’s gain to compensate for losses in the antenna. The antenna is designed and characterized with the cylinder’s bottom over a finite ground plane (no other antenna ground planes are used). The antenna is constructed using a modular approach out of a series of identical boards which act as antenna pixels. Each pixel contain four RF switches (one for each side of the board) along with contacts for control and ground wires. By fragmenting the reconfigurable antenna into individual pixel boards, one can construct elements of arbitrary size and shape with the primary physical constraint being how densely the electronics can be fabricated. By providing flexibility to scale in size, the antenna implementation can be optimized for more gain or for a smaller footprint. Two scaled versions of the same architecture have been constructed out of the same pixels to demonstrate the flexibility of the approach. In this paper we present data demonstrating more than 2 dBi gain from 1.2 GHz to 2.5 GHz band with beamwidths as narrow as 60°. Beam patterns are presented for GSM-900, GMS-1900, and WiFi frequencies. Finally, we will show the antenna element’s ability to maintain gain in a specific direction while forming a null over a series of offset angles.
The Performance of Modal Filtering in Passive and Active Integrated Antenna Measurements at 160 GHz
Linus Boehm, Martin Hitzler, Alexander Foerstner, Christian Waldschmidt, October 2017
The results of integrated antenna measurements are often severely distorted by reflections from the measurement environment. In order to feed passiveintegrated antennas wafer probes have to be used. Wafer probes are not only electrically large, but are also located in the immediate environment of the antenna undertest (AUT) and reflect part of the radiated signals. This causes significant distortions and erroneous results in radiation pattern, directivity, and gain measurements.Custom wafer probes have been used to reduce reflections for meaningful measurement results, but these special probes are difficult to fabricate and expensive. If the antenna is measured within an active system that generates the transmit signal, wafer probes are not required to feed the AUT, but bond wires, circuit elementsclose to the antenna, and parasitic radiation of surface waves also add distortions, which still limit the achievable accuracy of the measurements. In this paper modal filtering is used to mitigate the influence of these unwanted distortions in post-processing for both standard wafer probe and active antennameasurements. In the first part of the paper the performance of the post-processing technique is assessed for standard probe measurements at 160 GHz by comparing the post-processed results to a measurement of the same antenna using a custom made wafer probe that was designed for minimum reflections. In the second part modal filtering is used to reduce unwanted reflections for an active antenna measurement at 160 GHz. When the active circuitry that generates thetransmit frequency is integrated on the same chip as the AUT, the phase of the transmit signal is unknown. As the phase information is required for the post processing,a static external probe antenna is used as a reference to eliminate the phase drift of the measured signal. It is shown that modal filtering can be applied to integrated antenna measurements above 100 GHz and that reflections from wafer probes, bond wires, and the PCB canbe reduced significantly for passive and active antenna measurements, respectively.
Analysis of Near-Field RCS Behavior for mm-Wave Automotive Radar Testing Procedures
Domenic Belgiovane, Chi-Chih Chen, October 2017
Millimeter wave vehicular radar operating in the 77 GHz band for automatic emergency breaking (AEB) applications in detecting vehicles, pedestrians, and bicyclists, test data has shown that the radar cross section (RCS) of a target decreases significantly with distance at short range distances typically measured by automotive radar systems, where the reliable detection is most critical. Some attribute this reduction to a reducing illumination spot size from the antenna beam pattern. Another theory points to the spherical phase front due to measurement in the Fresnel region of the target, when the distance for the far-field zone is not met. The illumination of the target depends on the antenna patterns of the radar, whereas the Fresnel region effects depend on the target geometry and size. Due to fluctuations in measured data for RCS as a function of range in the near-field, upper and lower bounds for the target RCS versus range have been determined empirically as a method for describing the expected RCS of target. So far, the range-dependent RCS bounds used in AEB test protocols have been determined empirically. The study discussed in this paper aims to study the underlying physics that produces range-dependent RCS in near field and provide analytical model of such behavior. The resultant analytical model can then be used to objectively determine the RCS upper and lower bounds according to the radar system parameters such as antenna patterns and height. A comparison of the analytically predicted model and empirical near-field RCS as a function of range data will be presented for pedestrian, bicyclist, and vehicle targets.
Truncation Error Mitigation in Free-Space Automotive Partial Spherical Near Field Measurements
Francesco Saccardi, Francesca Rossi, Lucia Scialacqua, Lars Foged, October 2017
Modern cars are equipped with a large number of antennas which are strongly integrated with the car. A full characterization of the radiating properties of the entire vehicle is thus typically required. In order to characterize the radiating properties of the installed antennas, large measurement systems accommodating the full vehicle are required. As in standard antenna measurements, a full spherical near field (NF) scanning around the car is desirable in order to perform an accurate NF/FF transformation. However, due to size and weight of the Device Under Test (DUT) and/or economic factors a full spherical scan is often unfeasible. For this reason, truncated spherical scanners (such as hemispherical) are typically involved. A classic solution is to combine hemispherical scanning with a metallic ground plane which is assumed to be a Perfect Electric Conductor (PEC) in the NF/FF transformation. However, the PEC ground-plane is less representative of realistic automotive environments such as asphalt that is strongly dielectric. A further drawback is the strong scattering from the large metallic ground-plane which highly compromises the NF measurements at low frequencies. In many situations, it is thus desirable to perform the NF measurements in a condition similar to free-space by using absorber materials on the floor. It is well-known that standard NF/FF transformations applied to partial spherical acquisitions generates the so called truncation errors. Such errors are stronger at lower frequencies due to the lower number of spherical modes for fixed DUT size. Moreover, typical antennas for automotive applications are generally low directive thus, the impact of the truncation on the measured pattern is often non-negligible. In such cases advanced post-processing techniques must be involved to mitigate the effect of the truncation errors. In this paper two truncation error mitigation techniques will be compared when applied to automotive measurements performed in free-space conditions. The first technique is an iterative process which at each iteration applies a modal filtering based on the size of the DUT. The second technique is based on the computation of the equivalent currents of the DUT over an equivalent surface which acts as spatial filter. Both techniques give excellent mitigation performance with different computational effort. The good agreement between two different techniques effectively defining the lower bound for what can be successfully mitigated by post processing techniques.
Nonredundant NF-FF Transformation with Spherical Spiral Scan for a Non-Centered Quasi-Planar Antenna Under Test
Francesco D'Agostino, Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi, October 2017
Among the near-field - far-field (NF-FF) transformations, that with spherical scan [1] is the most appealing due to its feature to allow the whole radiation pattern reconstruction of the antenna under test (AUT). To get a considerable measurement time saving, spherical NF-FF transformations for AUTs with one or two predominant dimensions, requiring a minimum number of NF data, have been developed in [2], by using the nonredundant sampling representations of the electromagnetic (EM) fields [3] and adopting a prolate or oblate ellipsoid to shape the AUT. Another effective possibility to save the measurement time is to make faster the scan by collecting the NF data through continuous and synchronized movements of the probe and AUT. To this end, NF-FF transformations with spherical spiral scan have been recently proposed. They rely on the nonredundant representations and use optimal sampling interpolation (OSI) formulae [3] to effectively recover the NF data needed by the traditional spherical NF-FF transformation [1] from the acquired ones. The nonredundant sampling representation on the sphere from spiral samples and the related OSI expansion have been developed in [4-6] by adopting a spherical AUT model and choosing the spiral pitch equal to the sample spacing needed to interpolate along a meridian. Then, NF-FF transformations with spherical spiral scan for long or quasi-planar AUTs [7] have been obtained by applying the unified theory of spiral scans for non-volumetric AUTs [8]. Unfortunately, due to practical constraints, it is not always possible to mount the AUT in such a way that it is centered on the scanning sphere centre. In this case, the number of NF data required by the NF-FF transformation [1] and the related measurement time can remarkably increase, due to the corresponding grow of the minimum sphere radius. Aim of this work is the development of a fast and accurate nonredundant NF-FF transformation with spherical spiral scan suitable for quasi-planar antennas, which requires practically the same number of NF data both in the centered and offset mountings of the AUT. To this end, an offset mounted quasi-planar AUT is modeled as contained in a oblate ellipsoid, and an effective representation of the probe voltage over the scanning sphere, using a minimum number of samples collected on a proper spiral wrapping it, is developed by applying the unified theory of spiral scans for non-volumetric AUTs [8] in the spherical coordinate system having the origin coincident with the AUT centre at distance from the scanning sphere one. The related OSI expansion allows to accurately reconstruct the NF data required for the NF-FF transformation. [1] J. Hald, J.E. Hansen, F. Jensen, F.H. Larsen, Spherical near-field antenna measurements, J.E. Hansen, (ed.), London, Peter Peregrinus, 1998. [2] O.M. Bucci, C. Gennarelli, G. Riccio, C. Savarese, “Data reduction in the NF–FF transformation technique with spherical scanning,” Jour. Electr. Waves Appl., vol. 15, pp. 755-775, June 2001. [3] O.M. Bucci, C. Gennarelli, C. Savarese, “Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples,” IEEE Trans. Antennas Prop., vol. 46, pp. 351-359, March 1998. [4] O.M. Bucci, F. D’Agostino, C. Gennarelli, G. Riccio, C. Savarese, “NF–FF transformation with spherical spiral scanning,” IEEE Antennas Wireless Prop. Lett., vol. 2, pp. 263-266, 2003. [5] J F. D’Agostino, F. Ferrara, J.A. Fordham, C. Gennarelli, R. Guerriero, M. Migliozzi, “An experimental validation of the near-field - far-field transformation with spherical spiral scan,” IEEE Antennas Prop. Magaz., vol. 55, pp. 228-235, Aug. 2013. [6] F. D’Agostino, C. Gennarelli, G. Riccio, C. Savarese, “Theoretical foundations of near-field–far-field transformations with spiral scannings,” Prog. in Electr. Res., vol. 61, pp. 193-214, 2006. [7] R. Cicchetti, F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, M. Migliozzi, “Near-field to far-field transformation techniques with spiral scannings: a comprehensive review,” Int. Jour. Antennas Prop., vol. 2014, ID 143084, 11 pages, 2014. [8] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, M. Migliozzi, “The unified theory of near–field–far–field transformations with spiral scannings for nonspherical antennas,” Prog. in Electr. Res. B, vol. 14, pp. 449-477, 2009.
Ka-Band Measurement Results of the Irregular Near-Field Scanning System PAMS
Alexander Geise, Torsten Fritzel, Maurice Paquay, October 2017
The portable antenna measurement system PAMS was developed for arbitrary and irregular near-field scanning. The system utilizes a crane for positioning of the near-field probe. Inherent positioning inaccuracies of the crane mechanics are handled with precise knowledge of the probe location and a new transformation algorithm. The probe position and orientation is tracked by a laser while the near-field is being sampled. Far-field patterns are obtained by applying modern multi-level fast multipole techniques. The measurement process includes full probe pattern correction of both polarizations and takes into account channel imbalances. Because the system is designed for measuring large antennas the RF setup utilizes fiber optic links for all signals from the ground instrumentation up to the gondola, at which the probe is mounted. This paper presents results of the Ka-band test campaign in the scope of an ESA/ESTEC project. First, the new versatile approach of characterizing antennas in the near-field without precise positioning mechanics is briefly summarized. The setup inside the anechoic chamber at Airbus Ottobrunn, Germany is shown. Test object was a linearly polarized parabolic antenna with 33dBi gain at 33GHz. The near-fields were scanned on a plane with irregular variations of over a wavelength in wave propagation. Allowing these phase variations in combination with a non-equidistant grid gives more degree of freedom in scanning with less demanding mechanics at the cost of more complex data processing. The setup and the way of on-the-fly scanning are explained with respect to the crane speed and the receiver measurement time. Far-fields contours are compared to compact range measurements for both polarizations to verify the test results. The methodology of gain determination is also described under the uncommon near-field constraint of coarse positioning accuracy. Finally, the error level assessment is outlined on the basis of the classic 18-term near-field budgets. The assessment differs in the way the impact of the field transformation on the far-field pattern is evaluated. Evaluation is done by testing the sensitivity of the transformation with a combination of measured and synthetic data.
Verification of Spherical Mathematical Absorber Reflection Suppression in a Combination Spherical Near-Field And Compact Antenna Test Range
Stuart Gregson, Clive Parini, Allen Newell, October 2017
This paper presents the results of a recent study concerning the computational electromagnetic simulation of a spherical near-field (SNF) antenna test system. The new plane-wave scattering matrix approach [1, 2] allows many of the commonly encountered components within the range uncertainty budget, including range reflections, to be included within the model [3]. This paper presents the results of simulations that verify the utility of the spherical mathematical absorber reflection suppression (S-MARS) technique [3, 4] for the identification and subsequent extraction of artifacts resulting from range reflections. Although past verifications have been obtained using experimental techniques this paper, for the first time, corroborates these findings using purely computational methods. The use of MARS is particularly relevant in applications that inherently include scatterers within the test environment. Such cases include instances where a SNF test system is installed within an existing compact antenna test range (CATR) as is the configuration at the recently upgraded Queen Mary University of London (QMUL) Antenna Laboratory [5, 6]. Thus, this study focuses on this installation with results of CEM simulations and actual range measurements being presented. The method enables a quantitative measure of the levels of suppression offered by the MARS system. References A.C. Newell, S.F. Gregson, “Estimating the Effect of Higher Order Modes in Spherical Near-Field Probe Correction”, Antenna Measurement Techniques Association (AMTA) 34th Annual Meeting & Symposium, Bellevue, Washington October, 2012. A.C. Newell, S.F. Gregson, “Computational Electromagnetic Modelling Of Spherical Near-Field Antenna Test Systems Using Plane Wave Spectrum Scatting Matrix Approach”, Antenna Measurement Techniques Association (AMTA) 36th Annual Meeting & Symposium, Tucson, Arizona, October, 2014. C.G. Parini, S.F. Gregson, J. McCormick, D. Janse van Rensburg “Theory and Practice of Modern Antenna Range Measurements”, IET Press, 2014, ISBN 978-1-84919-560-7. G.E. Hindman, A.C. Newell, “Reflection Suppression in a large spherical near-field range”, Antenna Measurement Techniques Association (AMTA) 27th Annual Meeting & Symposium, Newport, RI, October. 2005. A.D. Olver, C.G. Parini, “Millimetre-wave Compact Antenna Test Range”, JINA Nice, November 1992. C.G. Parini, R. Dubrovka, S.F. Gregson, "CATR Quiet Zone Modelling and the Prediction of 'Measured' Radiation Pattern Errors: Comparison using a Variety of Electromagnetic Simulation Methods" Antenna Measurement Techniques Association (AMTA) 37th Annual Meeting & Symposium, Long Beach California, October 2015.
Serial-Robotic-Arm-Joint Characterization Measurements for Antenna Metrology
Michael Allman, David Novotny, Scott Sandwith, Alexandra Curtin, Josh Gordon, October 2017
The accurate alignment of antennas and field probes is a critical aspect of modern antenna metrology systems, particularly in the millimeter-wave region of the spectrum.Commercial off-the-shelf robotic arms provide a sufficient level of positional accuracy for many industrial applications.The Antenna Metrology Project in the Communications Technology Laboratory at the National Institute of Standards and Technology has shown that path-corrected commercial robotic arms, both in hardware and software analysis, can be used to achieve sufficient positioning and alignment accuracies (positioning error ~ /50) for antenna characterization measurements such as gain extrapolation and near-field pattern out to 183 GHz [1]. Position correction is achieved using a laser tracker with a 6 degree of freedom sensor attached to the robot end effector.The end effector’s actual position, measured using the laser tracker, is compared to its commanded position and a path correction is iteratively applied to the robot until the desired level of accuracy is achieved in the frequency range of interest.At lower frequency ranges (< 40 GHz), sufficient positional accuracy can be achieved, without path correction, using a using a calibrated kinematic model of the robot alone [2].This kinematic model is based on knowledge of the link frame transformations between adjacent links and captures deviations due to gravitational loading on the joints and small mechanical offsets between the joints.Additionally, the calibration procedure locates the robot’s base frame in the coordinate system of the robot’s end effector.Each link frame is described by four physical quantities, known as Denavit-Hartenberg (DH) parameters [3]. We performed calibration measurements of our CROMMA system’s DH parameters over a working volume of ~1 m3.We then use the laser tracker to compare the robot’s positional accuracy over this working volume with and without the calibrated kinematic model applied.The path errors for the calibrated case set an upper frequency limit for uncorrected antenna characterization measurements. [1]D. R. Novotny, J.A. Gordon, J.R. Guerrieri, “Antenna Alignment and Positional Validation of a mm Wave Antenna System Using 6D Coordinate Metrology, ” Proceedings of the Antenna Measurements Techniques Association, pp 247-252, 2014 [2]R.Swanson, G. Balandran, S. Sandwith, “50-micron Hole Position Drilling Using Laser Tracker Controlled Robots, ” Journal of the CMSC, Vol 9, No 1, Spring 2014 [3].J.J. Craig, “Introduction to Robotics: Mechanics and Control, 3rd ed.,” New Jersey, Prentice Hall, 2004, pp. 62-69
Filtering Antenna-to-Antenna Reflections in Antenna Extrapolation Measurements
Robert Horansky, Mohit Mujumdar, Dylan Williams, Kate Remley, Joshua Gordon, David Novotny, Michael Francis, October 2017
At NIST, we have developed a precision, wide-band, mmWave modulated-signal source with traceability to primary standards. We are now extending the traceability path for this modulated-signal source into free space to be used for verifying over-the-air measurements in 5G, wireless receivers. However, to obtain a traceable modulated signal in free space, the full scattering matrix of the radiating antenna must be measured. We have extended the extrapolation methods used at NIST, based on the work of Newell, et al. [1]. The extrapolation measurement provides a very accurate, far-field, on-axis, scattering matrix between two antennas. When combined with scattering-matrix measurements made with permutations of pairs of three antennas, far-field scattering, and, thus, gain, is obtained for each antenna. This allows an accurate extrapolation of the antenna’s near-field pattern. We have incorporated the extrapolation fitting algorithms into a Monte Carlo uncertainty engine called the NIST Microwave Uncertainty Framework (MUF) [2]. The MUF provides a framework to cascade scattering matrices from various elements, while propagating uncertainties and maintaining any associated correlations. By incorporating the extrapolation measurements, and the three-antenna method into the MUF, we may provide traceability of all measurement associated with the gain, including the scattering parameters. In this process, we studied several aspects of the gain determination. In this work, we show simulations determining the efficacy of filtering to reduce the effect of multiple reflection on the extrapolation fits. We also show comparisons of using only amplitude (as is traditionally done) to using the full complex data to determine gain. Finally, we compare uncertainties associated with choices in the number of expansion terms, systematic alignment errors, uncertainties in vector network analyzer calibrations and measurements, and phase error introduced by cable movement. With these error mechanisms and their respective correlations, we illustrate the NIST MUF analysis of the antenna scattering-matrix with data at 118 GHz. [1] A. C. Newell, R. C. Baird, and P. Wacker “Accurate Measurement of Antenna Gain and Polarization at reduced distances by an extrapolation technique” IEEE Transactions on Antennas and Propagation. Vol. 21, No 4, July 1973 pp. 418-431. [2] D. F. Williams, NIST Microwave Uncertainty Framework, Beta Version. NIST, Boulder, CO, USA, Jun. 2014. [Online]. Available: http://www.nist.gov/pml/electromagnetics/related-software.cfm
Measurements of Low Gain VHF Antennas in Spherical Multi-Probe NF Systems
Andrea Giacomini, Francesco Saccardi, Vincenzo Schirosi, Francesca Rossi, Stephane Dooghe, Arnaud Gandois, Lars Foged, October 2017
Measurement of the radiation properties of low gain antenna operating at VHF frequencies is well known to be a challenging task. Such antennas are sometimes tested in outdoor Far Field (FF) ranges which are unfortunately subject to errors caused by the electromagnetic pollution and scattering from the environment. Near Field (NF) measurements performed in shielded anechoic chambers are thus preferable to outdoor ranges. However, also in such cases, the accuracy of the results may be compromised by the poor reflectivity of the absorbing material which might be not large enough wrt the VHF wavelength. Other source of errors may be caused by the truncation of the scanning area which generates ripple on the FF pattern after NF/FF transformation. Spherical multi-probe systems developed by MVG are optimal measurement solution for low directive Device Under Test (DUT). Such systems allow to perform a quasi-full spherical acquisition combining a rotation of the DUT along azimuth, with a fast electronically scanned multi-probe vertical arch. The DUT can be accommodated on masts made of polyester material which allows to minimize the interaction with the DUT. Measurements of low directive device above 400 MHz performed with such type of systems have been demonstrated to be accurate and extremely fast in previous publications. In this paper, measurements of a low directivity antenna, performed at VHF frequencies in a MVG spherical multi-probe system, will be presented. The antenna in this study is an array element, part of a larger array, which has been developed for space-born AIS applications. Gain and pattern accuracy of the measurement will be demonstrated by comparison with full wave simulation of the tested antenna.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.