Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
Measurements of antenna array’s patterns are usually taken with feed networks, but for some digital beam forming arrays, feed networks are not included. To measure such arrays in traditional way, we must design a feed network first, which is too complex and inefficient when steering is required. A VNA can act as a multichannel receiver to form a digital beam forming array for testing. Today’s VNA may have many test ports (for example, 9-ports in Agilent E5091A multiport test set and 11-ports in Advantest R3986 multiport test set.) designed for multiport devices, which is very suitable for measuring small arrays without using feed networks. Another advantage of this method is that it can eliminate errors from imperfect feed networks. Automatic measurement program is required to calculate array patterns from S-parameters, which is easily developed using Labview or Matlab. Test results of a 3-elements adaptive anti-jam array with different jam DOA are demonstrated.
For enhancing the performance of existing near field antenna test facilities it is quite reasonable to use both conventional (the amplitude and phase measurements) and the phaseless measurements techniques during electrically scanning phased array antennas (PAA) testing. This simple yet critical approach helps to improve the quality of PAA alignment and testing reducing measurement errors and saving costs. In this way many difficulties related to precise phase measurements are overcome. Both simulation and measurement results will be presented to demonstrate the utility of such approach to PAA alignment and determination of its parameters. Comparison will be made between the PAA patterns for electrically scanned beams calculated using traditional near field - far field (NF/FF) transformations, the phaseless methods and the results obtained applying both measurement techniques.
Y. Zhu,F.C. Chang, G. Cheng, S. Huynh, November 2004
This paper presents a novel variable width time gating technique, which is applied to planar and cylindrical near-field data in impulse time-domain antenna near-field measurements. Due to the changing distance between the probe and the antenna under test (AUT) in planar and cylindrical scans, the conventional fixed time gating technique causes problems to remove multiple reflections from the desired AUT response. It further limits the application of time-domain measurement to planar and cylindrical scans. The new variable width time gating technique provides a flexible way to solve these problems. Test results for both planar and cylindrical near-field measurements are presented. The difference of far-field patterns between time-domain and frequency-domain near-field measurements is noticeable. We also show the effects on the far field patterns due to fixed and variable time gating windows. We further conclude that the time-domain technique also works for planar and cylindrical near-field measurements by using variable width time gating technique.
In order to accommodate the high volume of RF testing required for a specific large production antenna build, Ball Aerospace designed and built a miniature antenna test cell. The test cell is capable of performing VSWR measurements and antenna patterns, namely principal planes and conics, per the test requirements of the program. A significant effort was made to streamline the manufacturing process of the antennas and minimize the test time in order to reduce costs and meet production goals. The test cell features an integrated laptop PC, barcode scanner, and requires a HP8753E network analyzer. Human factors and process flow were important drivers in the chamber’s design. Specific test parameters for the antennas reside in a database referenced by a unique bar-code serial number attached to the back of each antenna. The operator is not required to have any a priori knowledge of the antenna or its performance parameters. The operation involves scrolling though a set of prompts from the computer. For this chamber, custom mechanical drawings, motor control systems, and software was designed and engineered to provide maximum efficiency on the production floor. The chamber, measuring only 6’ x 6 ‘ x 8 ‘, has provided comparable results to an on-site 75 foot tapered chamber. This approach is expected to be adopted by additional antenna programs internally in order to off-load capacity from large tapered antenna chambers.
A problem of determination of an antenna phase center (PhC) usually is solved by different ways from a theoretical calculation to the near-field measurements of complex characteristics in the aperture of an antenna or the far-field measurements of the radiation-pattern phase. The present paper is devoted to a general technique of an antenna PhC determination by use of the known (or the measured) distribution of the complex characteristics in the antenna near zone or the phase pattern in the far zone. An algorithm of determination of the phase pattern evolute, based on the lowest moments of distribution, as well as a criterion for PhC existence, which is independent on the observation angle, are offered. A simple expression of PhC for an antenna with a quadratic phase distribution in the aperture is obtained. An error of PhC determination depending on both the error of observation angle and the error of measurement of the phase pattern is considered.
This paper presents background information and experiment procedures for an antenna measurement laboratory course to be held in a new anechoic chamber at California Polytechnic State University. The lab consists of five experiments and one design project intended to give students practical experience with antenna measurement techniques and to creatively apply analytical skills to design, construct, and test antennas that meet given specifications. The experiments reinforce antenna principles including E-field polarization, antenna gain, radiation patterns, image theory, and frequency response. In addition to the experiment procedures, this paper presents the design and characterization of Helical Beam (RHCP and LHCP) and Discone antennas, a Dipole Antenna near Planar and Corner Reflectors, and Dipoles with and without a balun. These antennas demonstrate polarization, antenna gain, broadband matching characteristics, image theory, and feedline radiation due to unbalanced currents. Measured radiation patterns, gain, and axial ratio (helical only) show excellent correlation to theoretical predictions.
L. Cuchesne,A. Gandois, G. Barone, N. Robic, P. Carreau, P.O. Iversen, November 2004
Rapid characterization and pre-qualification measurements are becoming more and more important for the ever-growing number of small antennas, mobile phones and other wireless terminals. There is a need driven by the wireless industries for a smart test set-up with reduced dimensions and capable of measuring radiating devices. Satimo has developed a compact, mobile and cost-effective test station called StarLab which is able to perform rapid 3D measurements of the pattern radiated by wireless devices. The StarLab equipment is derived from Satimo’s StarGate systems which are now well established spherical near field test ranges. StarLab uses a circular probe array to allow for real time full elevation cuts and volumetric 3D radiation pattern measurement within a few minutes. It is operating between 400MHz and 6GHz and can be configured for passive measurements and also cable less-active measurements. This paper describes in detail the multi-probe antenna test station and its different configurations for passive and active measurements. The accuracies for gain and power measurements are also presented as well as considerations on the total radiated power measured by the equipment. Additionally, calibration issues are discussed. Finally, measurements performed with the StarLab test station at Satimo are shown and illustrate the capabilities of the system. The measurement results are validated by comparison to the results obtained in other test ranges.
B. Sanchez,I. Bertino, L. Hemming, M. Bozzetti, M. D'Urso, November 2004
ORBIT/FR is presently under contract to provide Alenia Aeronautics with the HIRF – EW test facility to perform radiated field immunity testing of aerospace vehicles with high electromagnetic field intensity: radiated emission measurements, which belong to EMC testing; electronic warfare and antenna pattern tests. This unique facility will combine specific EMC, EME, EW measurements as well as specific antenna measurements. An anechoic-shielded chamber therefore, represents the ideal solution to perform these tests, because it provides the electromagnetic shielding and protection against the internal and external electromagnetic environments. While in many cases as little as -10 dB of round trip reflection may be adequate for EMC testing applications, in the EW tests to be performed at frequencies higher than 500 MHz, is required a fairly lower level of reflectivity. The facility will include an anechoic-shielded chamber (ASC) where the System under Test (SUT) is installed and operated in its functional modes to perform susceptibility tests and emission tests. The ASC will be equipped with a turntable having the capability of arranging the System Under Test (SUT) in front of the radiating antennas at different aspect angles. The ASC will provide internal size of 30 x 30 x 20 (H) m. The pyramidal absorber material shall be permanently installed on ASC ceiling, vertical walls and doors. As far as the floor is concerned two configurations are possible: proposed facility. The model will be described and the effort to scale the performance of the full size absorbers. The development and fabrication of scale model antennas. The establishment of measurement techniques, which will allow the correlation of the scale model measurement to the computer model performance predictions and the potential performance of the completed full size chamber.
W. Lippincott,M. Lundmark, R. Eisinger, T. Gutwein, November 2004
Accurate near-field calibration of a large 60 ft. diameter reflector can be accomplished with a minimal sampling technique. Near-field amplitude and phase is collected as the reflector scans across a receiving calibration tower. The near-field data is then transformed to a far-field pattern using a Fourier transform technique. Information on far-field EIRP, directivity, pointing, axial ratio and tilt, as well as encoder timing is obtained with accuracies comparable to anechoic chamber measurement techniques. The system was analyzed for sampling and multipath effects, as well as the effects of phase and amplitude stability. A spherical wave expansion technique was compared to a straight-forward summation technique for the Fourier transform.
In general, the RF test setups of antenna test facilities are designed and optimized for antenna pattern and gain measurements. However, the operation of test facilities, especially the here considered 'Double Reflector Compact Ranges', can be extended, so that they can also be used for RCS testing.
A simple and very practical expansion of the RF antenna test setup - while maintaining the real-time capability - can be achieved with the aid of a hardware gating system. With this type of setup, RCS measurements have successfully been performed in the Compensated Compact Ranges of EADS Astrium. The applied gating system was the high resolution Hard- gating System HG2000 of EADS Astrium, developed together with the Munich Univ. of App. Sciences.
Within this paper, the applied facility and the gating system will be described firstly. Subsequently, the modified test setup and the test results obtained by calibration measurements will be shown. They will give an indication of the achievable resolution for the extended test system w.r.t. object size detection and resulting amplitude dynamic range.
E. Walton,C. Buxton, J. Snow, T.H. Lee, November 2004
The gain patterns of VHF/UHF antennas on ground structures and vehicles are influenced by the characteristics of the ground. The measurement of the performance of such antennas is more accurate with a test chamber that incorporates a realistic ground surface.
This paper will discuss the near field to far field transformation process for the case where there are reflections from a ground surface outside the probing hemisphere. We will show that the ground reflection term in the transformation must be based on the characterization of the ground outside the probe region.
P. Suvikunnas,I. Salonen, J. Kivinen, P. Vainikainen, November 2004
Exploitation of MIMO (Multiple-Input Multiple-Output) system in laptop type device, which size is adequate to integrate several antennas on it, would be the solution to increase attainable capacity e.g. in wireless local area networks (WLAN). Thus, a microstrip prototype antenna with two polarizations is developed for MIMO and also for diversity system purposes. Firstly, two antennas of this type were placed against to each other, which guarantees a good coverage over a whole propagation area. Secondly, two antennas of this type were placed next to each other. The simulated radiation patterns of the prototype antenna are used in the capacity studies of MIMO system using real indoor propagation data. The effect of shadowing by human body as well as different tilting angles of “laptop cover/screen” are considered. Further, different locations of the “device” in azimuth plane were considered identifying the fluctuation of the results due to the environmental and antenna properties. The developed antenna systems perform well as compared to the ideal dipole system.
H. Lee (ElectroScience Laboratory),C-C Chen (ElectroScience Laboratory),
K. Sickles (WPAFB/SRL),
R. Lee (ElectroScience Laboratory), November 2003
A prototype design of the dielectric rod antenna is discussed. This novel design is suitable for nearfield probing application in that it provides broad bandwidth, dual-polarization and low RCS. The design details are provided in this document along with measurement data associated with important antenna characteristics such as VSWR and far-field radiation pattern
Occasionally, antenna patterns have discontinuities or “glitches” in them. While most of these glitches are obvious to a human looking at the plot, it can be difficult for a computer to automatically identify glitches while ignoring sidelobes and other real features of the antenna pattern. This paper will present a technique for accurately identifying and removing antenna pattern glitches through the use of higher order derivative information.
A.C. Newell (Nearfield Systems Inc.), November 2003
Probe position errors, specifically the uncertainty in the theta and phi position of the probe on the measurement sphere, are one of the sources of error in the calculated far-field and hologram patterns derived from spherical near-field measurements. Until recently, we have relied on analytical results for planar position errors to provide a guideline for specifying the required accuracy of a spherical measurement system. This guideline is that the angular error should not result in translation along the arc of the minimum sphere of more than ?/100.
As a result of recent simulation and analysis, expressions have been derived that relate more specifically to spherical near-field measurements.
Using the dimensions of the Antenna Under Test (AUT), its directivity, the radius of the sphere (the minimum sphere) enclosing all radiating surfaces and the frequency we can estimate the errors that will result from a given position error. These results can be used to specify and design a measurement system for a desired level of accuracy and to estimate the measurement uncertainty in a measurement system.
D.E. Warren (Air Force Research Laboratory),J. Woods (Air Force Research Laboratory), November 2003
The direction of arrival of multiple coherent electromagnetic signals can be determined by measuring the pattern of an antenna probe when it is rotated off its phase center and then exciting a synthetic array with the same geometry as the probe measurement points using the signals received in the measurement. The offset and angle of sweep, which defines the aperture size required for separating the waves, depends upon the resolution required. The sampling resolution must also fall within the Nyquist sampling criteria.
C.W. Sirles,A.R. Howland, M.H. Sewell, November 2003
This paper describes a family of new measurement systems, termed “test cells”, designed to satisfy the certification requirements of the Cellular Telephone & Internet Association’s (CTIA) “Method of Measurement for Radiated RF Power and Receiver Performance” test plan for wireless subscriber stations. These test cells employ simultaneous dual-axis mechanical scanning and operate in both far-field and near-field modes over the 750MHz to 6 GHz frequency range. Operation can be extended to higher frequencies through the use of suitable sampling antennas. Test cell facility configuration is detailed.
Scanner layout and RF sampling antenna designs are discussed. Anechoic chamber characterization data is presented along with typical measured pattern and efficiency data for both broadbeam and directive AUT’s.
Measurement test times for various test scenarios are discussed.
The Cellular Telecommunication and Internet Association has developed a ripple test measurement for qualifying the quiet zone of wireless pattern measurement systems for their Mobile Station Over the Air Test Plan. The data produced by this ripple test provides a very thorough characterization of the worst possible contributions to an antenna pattern measurement performed on the qualified system. However, the characterization represented by the maximum ripple significantly overestimates the ripple seen on typical pattern measurements produced by the qualified system, and greatly overestimates the actual uncertainty involved in the determination of integral quantities such as Total Radiated Power (TRP). In order to better account for the results of this test, a statistical analysis method referred to as the Surface Standard Deviation (SSD) has been developed to determine an expected uncertainty for surface integral quantities. This paper will present the background and formulation of the SSD method and show some typical results.
I.J. Gupta (The Ohio State University),J-F Lee (The Ohio State University),
R.C. Flippo (Los Angeles Air Force Base),
W.D. Burnside (The Ohio State University), November 2003
A novel structure for accurate measurements of antennas mounted on an infinite ground plane has been designed and built. The structure is eight feet in diameter and can be used to measure antennas as big as fourteen inches at the base at frequencies as low as 1 GHz. The structure is defined by blending a planar surface with an elliptical surface such that near the antenna under test the surface resembles a planar surface and then it slowly rolls back to minimize any diffractions due to discontinuities in the surface.
Patterns of a few antennas mounted on the structure are presented and compared with the expected patterns of the antennas mounted on an infinite ground plane.
J. Kim (University of California, Los Angeles),Y. Rahmat-Samii (University of California, Los Angeles), November 2003
In this paper, the electromagnetic (EM) characteristics of various antennas implanted in both the human head and the human body are analyzed for biomedical applications such as hyperthermia and biotelemetry.
The implanted antennas are studied in two ways: the near- and far-field patterns of the antenna are calculated and the potential effects on the human body are observed. To ensure the correctness of the results, we apply two simulation methodologies: dyadic Green’s function (DGF) expansions and finite difference time domain (FDTD).
We characterize the performances of the low profile antennas designed for biomedical applications in terms of specific absorption rate (SAR), radiation patterns, maximum available power and safety issues. These results should also provide a good basis for validating the results of experimental data.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.