AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Pattern

3-D Antenna Measurement System - Low Gain Antenna Measurements and CTIA OTA Testing
D. Gray,J. Soong, November 2005

ABSTRACT We are in the era of wireless communications and devices. The antennas that enable these technologies are electrically small and can be challenging to test and analyze. Yet, the industry is becoming more standardized, and so too are the tests and certifications being adopted to validate these antennas. These antennas must undergo “antenna measurements” to characterize such information as far-field patterns and gain. Additionally, hand-held devices, such as cell phones, must satisfy requirements of the Over-the-Air (OTA) performance tests as specified by the Cellular Telecommunication and Internet Association (CTIA). These tests require a measurement system that can accurately collect data on a spherical surface enclosing the AUT. This system also has to provide the appropriate data analysis capabilities and has to be constructed from dielectric materials to minimize reflections.

An Analysis of The Accuracy of Efficiency Measurements of Handset Antennas Using Far-field Radiation Patterns
I. Kadri,R. Thorpe, T, Palmer, November 2005

Radiation efficiency is an inherent property of an antenna that relates the net power accepted by an antenna to the total radiated power. It is especially useful for handset antennas where the radiation patterns are often of less use for comparing competing antennas. Radiation patterns though not as useful for direct comparisons, still provide one method by which efficiency can be calculated. To accurately calculate the efficiency from patterns, it becomes necessary to obtain multiple pattern measurements (cuts). A larger number of cuts whilst yielding more accurate efficiency results, significantly increase measurement time. Thus an antenna designer is often forced to trade off accuracy against measurement time since both quick and accurate measurements are desired. The focus of this paper is to quantify this trade off, in order to provide guidelines on the number of pattern measurements required for accurate efficiency results. Simulated and measured far-field radiation patterns are used and various numbers of cuts are utilized to quantify the loss in accuracy with a reduced number of cuts. The techniques outlined are geared primarily towards cellular handset antennas.

Terminal Antenna Measurements with the Use of a Built-In Signal Source
P. Kabacik,A. Byndas, R. Hossa, November 2005

This paper presents the methodology we use to measure radiation patterns of small terminal antennas. The in-house developed measuring system is capable to record radiation patterns on the entire sphere and recorded values are not corrupted due to proximity of a large dual-axis positioner. As a feed cable had been identified as a primary factor modifying electrical properties of small antennas, we eliminated the feed cable at all by use of a built-in generator. Such generator is mounted back-to­back to the measured antenna. Most preferable the generator should be supplied with a battery, but use of a wired dc supply with a typical supplier is also acceptable in many instances. Such a concept of setup brings about many problems with providing a reference signal to an antenna receiver. Perhaps, firm operation of a reference channel is hard to accomplish without using advanced engineering means. Among them may be a switch with permanent power monitoring in its channels or an optoelectronic leg in the antenna microwave feed.

Single Fault Detection of an Array using neural Networks
N. Sarma,D. Vakula, November 2004

A method for detecting a single faulty element in a linear array using neural networks is presented. A feed forward back propagation neural network is trained to detect the faulty element. Given the error patterns due to the faulty array, the network can predict the number of faulty element. A linear array of 21 elements with uniform excitation and uniform spacing is considered. Indexing Terms: Array, Neural Networks, Feed Forward, Back Propagation.

High Power Antenna Measurements in a Near-Field Facility: A Practical Approach
A. Boomstra,T. Lyes, November 2004

Doing EIRP measurements in a nearfield facility is a known procedure. However, if the transmitted power is relative high, options are limited and care must be taken to prevent damage on equipment and absorbers. This paper describes how EIRP and pattern measurements for high power antennas and transmitters can be done in an indoor facility, and describes various considerations, choices and practical aspects. An example shows that even high power wide-band systems can be measured in near-field facilities.

Planar near0Field Antenna Test Facility at KRISS
J. Kang,H, Kang, N. Choi, J. Kim, November 2004

The KRISS is in the process of completing the construction and installation of a planar near-field antenna test facility in the frequency range of 2 GHz to 50 GHz. This paper describes the planar near-field antenna test facility. Comparison of the far-field pattern, for verifying the antenna test facility, using a parabola antenna as artifact is also described. The patterns were measured by using the installed antenna test facility and a method developed by our group and showed good agreement.

Scan Plane Reduction Techniques for Planar Near-Field Antenna Measurements
D. Janse van Rensburg, November 2004

In this paper two planar near-field scan plane reduction techniques are considered and results are presented. It is shown how truncation based on field intensity contours, instead of simple geometric truncation can in some cases improve the efficiency of the truncation process. Both techniques are applied to measured data sets and it is shown how these methods can be used to reduce data acquisition times while also assessing the impact of the total acquisition surface reduction on the far-field radiation pattern integrity.

Methodology for Measuring Electrically Small Antennas
R. Wansch, November 2004

At the Fraunhofer IIS many antenna design and measurement problems deal with electrically small antennas for different wireless communication links. Therefore we want to establish a meaningful procedure to measure the pattern and also the gain of these antennas quite exactly.

A Composite Near-Field Scanning Antenna Range for Millimeter Wave Bands
D. Hess,J. McKenna, S. Nichols, November 2004

This paper describes a Composite Near-Field Scanning Antenna Range for frequency bands that extend from X- Band in the microwave frequency regime through W- Band in the millimeter-wave regime – i.e. 8.2 through 110 GHz. We show some of the initial checkout data using pyramidal standard gain horns and compare the patterns to theory.

Design and Measurements of CPW-Fed Planar Ultra-Wideband Antenna
Y. Kim,D. Kwon, S. Lee, Y. Kim, November 2004

The frequency band 3.1 – 10.6 GHz has been opened for commercial use. Design and measurement of Ultra Wide Band (UWB) antennas in UWB communication systems are growing rapidly due to difficult requirements of UWB antennas such as small size, non-dispersiveness and ultra wide-band characteristics. In this paper, a CPW-fed planar ultra-wideband antenna is presented. Measurement results show that the radiation gain patterns are strongly influenced by the interaction signals between the antenna and the cable, especially at low frequency band. The performance of this antenna is also dependent on the leakage current along the cable. The antenna is mounted on various rectangular metal electronic devices such as DVD players or digital camcorder to investigate the interaction between the antenna and nearby metal objects. The antenna proves to be a good UWB antenna with broad radiation pattern, consistent gain and small group delay variation. The experiment shows that the performance of this antenna depends heavily on the cable interactions and the object that it is mounted on.

A Microstrip Leaky Wave Antenna and Its Properties
J. Radcliffe,G. Thiele, G. Zelinski, November 2004

It is well known that a microstrip transmission line can radiate if it is excited in its first higher order mode (with the fundamental or dominant mode suppressed). A new microstrip configuration is proposed that supports the first higher order mode while suppressing the fundamental mode. To quantify the leakage constants in the two cases for comparison purposes, several experimental means are considered to determine the source amplitude distribution from which the leakage constants may be deduced. First, an approximation to the source distribution is determined from the far field patterns themselves. Second, the source distribution is determined by carefully probing the near field. This paper uses these techniques to verify the performance of a new leaky wave antenna design.

Measured Characteristics of Zone Plate Antennas
J. Wiltse, November 2004

The Fresnel zone plate lens antenna has seen extensive investigation in the recent past, and has been used at frequencies from the microwave range through the millimeter-wave region to terahertz frequencies. For the usual zone plate antenna employed at these frequencies, path correction (i.e. phase adjustment) is accomplished by cutting different depths (grooves) in a dielectric plate or by using two or more dielectrics having different dielectric constants. Usually the focal length and aperture diameter are comparable, unlike the Fresnel zone plates which have been used at optical wavelengths. The planar configuration offers advantages of low cost, low loss, low weight, and ease of fabrication, while providing better performance, in some cases, than a true hyperboloidal or spherical lens or reflector antenna. Although the gain of the zone plate is normally less than that of a true lens, the reduced attenuation gives a greater overall system gain for the zone plate. Many measurements have been made to determine the antenna patterns (including beamwidth and sidelobe level), gain, efficiency, frequency dependence, focal behavior, aberrations, and bandwidth for both transmission and reflector designs. The major area of current debate is the question of efficiency as understood from analysis compared with actual measurements. This paper summarizes the parameters of zone plate antennas, and defines areas where more measurements are needed to fully describe their characteristics.

Multi-Purpose RCS/Antenna Test Facility at Nurad Technologies, Inc.
j. Aubin,A. Humen, C. Hodnefield, C. Kelly, J. Platt, R. Engle, November 2004

Antennas that are used aboard next generation airborne, maritime and ground vehicles are increasingly required to satisfy both conventional radiation pattern and gain requirements as well as new radar cross section (RCS) requirements. In response to these requirements, Nurad and ORBIT/FR recently completed design, installation, and verification of a high performance, multi-purpose antenna and RCS measurement facility at the Nurad site in Baltimore, Maryland. This compact range facility features a 60x36x26 foot shielded anechoic chamber and a precision machined, serrated edge, offset-fed reflector system that produces a 5.3’H x 8’W x 8’L quiet zone over the 2-50 GHz frequency range. The facility includes a unique feed room structure that positions the primary radar components close to the feed mount for RCS measurements, and allows for easy change of compact range feed antennas. A removable pylon assembly is used for test body support during RCS testing, and a unique add on section to the pylon rotator allows for inclusion of a roll axis that enables measurement of small and medium size antenna assemblies without removing the pylon. Measurements performed on low RCS standard targets and antennas made in the chamber demonstrate that the chamber provides a high performance measurement environment while providing ease of use and rapid configuration and target changeover.

A Feed Scanning Based APC-Technique for Improving the Measurement Accuracy in a Sub-MM CATR
V. Viikari,A. Räisänen, J. Ala-Laurinaho, J. Häkli, J. Mallat, November 2004

It is vital for many future scientific remote sensing satellite missions to develop accurate measurement techniques for high-gain sub-mm wave antennas. At microwaves and longer millimeter wavelengths, the measurement techniques are well established and several error compensation methods have been introduced. This paper proposes a novel error compensation technique suitable for compact antenna test ranges (CATRs) at sub-mm wavelengths. The method is based on antenna pattern comparison (APC). In the APC-technique, several antenna patterns are recorded at different positions in the quiet-zone field and the corrected pattern is obtained by averaging the measured patterns. In the proposed technique, the relatively small feed antenna of the CATR is moved instead of moving the heavy combination of the antenna under test (AUT) and the rotation stage. This is much easier to accomplish. The applicability of the proposed method is studied and the method is demonstrated by a combination of quiet-zone measurements and simulations of the antenna measurements in a hologram based compact antenna test range at 310 GHz. For verification purposes the results with this method is compared to the results with the conventional APC-technique.

Feasibility Study of a Hologram Based Compact Antenna Test Range for 650 GHz
T. Koskinen,A. Räisänen, J. Ala-Laurinaho, November 2004

We have constructed a hologram based compact antenna test range (CATR) and tested its performance at 650 GHz. A hologram of 0.93 meter in diameter was used as the focusing element of CATR. The test was done to demonstrate the feasibility of the hologram based CATR at high submillimeter wave frequencies. A suitable substrate material was found for the hologram. Direct laser writing of the hologram pattern combined to chemical wet-etching was used as the manufacturing method. The quiet-zone field was probed using a planar scanner. For an adequate dynamic range, a backward-wave oscillator (BWO) was used as the transmitter and a Schottky diode harmonic mixer as the receiver. The results from the quiet-zone testing are good. The applicability of the hologram based CATR for high sub-millimeter wave frequencies is considered on the basis of the results of this work.

Sub-mm Antenna Tests in a Hologram Based CATR
J. Hkli,A. Lonnqvist, A. Rnen, J. Ala-Laurinaho, J. Lemanszyk, J. Mallat, J. Sily, J. Tuovinen, T. Koskinen, V. Vilikari, November 2004

Computer generated holograms can be used as collimating elements in compact antenna test ranges (CATRs). Recently, a 1.5 m parabolic antenna, the ADMIRALS representative test object (RTO), was tested at 322 GHz using a hologram based CATR that was built specifically for these tests. In this paper, the construction of the compact range is discussed. A 3­meter hologram was used to realize a 1.8 meter diameter quiet-zone. The measured quiet-zone field amplitude and phase and the measured H-plane radiation pattern cut of the RTO are presented. The measured -3 dB beam width of the antenna was 0.050º in the H-plane.

Techniques for Measuring Adaptively Cohered Distributed Antenna Apertures
J. Kemp,C. Kerce, G. Hampton, J. Holder, November 2004

An internal research and development project at the Georgia Tech Research Institute (GTRI) focused on cohering multiple apertures into a single distributed aperture. Cohered distributed aperture antenna patterns were collected on the GTRI far-field range for a 1.5 GHz bandwidth at X-band frequencies. Both 1-way and 2-way antenna patterns were measured, with the 1-way antenna pattern measurement requiring coherence on receive only and the 2-way antenna pattern measurement requiring coherence on transmit and receive. The resulting data were compared with the ideal angular resolution and power-aperture gain product improvements from a perfectly cohered distributed aperture, and the results are presented. As measurement techniques were developed for collecting 1-way and 2-way antenna pattern data, sources of potential errors in measurement collection and aperture coherence were identified, with potential methods of error mitigation outlined.

Determination of Element Locations in a Wideband Phased Array
H. Aumann,F. Willwerth, K. Tuttle, November 2004

In this paper the electrical displacement of phased array elements along the axis of a linear array, and in the direction normal to the array are examined. A closed-form solution is presented for determining the location of phased array elements from the first and second derivatives of the phase measured on a near-field antenna range. The technique is applied to swept CW measurement patterns of a 20-element, S-band array of open-ended waveguides. It is shown that the electrical location of edge elements differs significantly from the physical location in both x-dimension and z-dimension. The effects of wide array bandwidth on the phase center displacement are illustrated.

Active Antenna Measurement System with High speed Time Synchronization
L. Shmidov,S. Hizkiahou, November 2004

Phased arrays antennas are designed to control their radiation characteristics by accurately setting the phase and amplitude distribution of the elements. Inaccurate control of the phase and amplitude can significantly alter the radiation pattern of an array. In fact, the operating principle of scanning arrays of elements for applications such as target tracking or mobile satellite communications, where the requirements for low side lobes and high gain are of very high importance, is primarily based on precise control of the phase and amplitude of the elements. For these reasons, the complexity of antenna measurement system design for phased array antennas measurements involves high accuracy and precise time synchronization between all the components of the system. This paper presents a comprehensive solution for accurate and reliable measurement of very large phased array antennas at high frequencies. The presented solution addresses the following issues: • Accurate positioning of the RF sensor / probe. • High-speed multi – frequency data collection. • High-speed multi - port data collection. • Programmable and real-time TTL position event triggers. • Pulse measurement. • Multi beam measurement. • Synchronization with the radar computer.

Testing of the MESSENGER Spacecraft Phased Array Antenna
R. Wallis,J. Brussi, P. Malouf, November 2004

Techniques for measurement of the phased-array antenna system include ambient temperature measurements in a compact antenna range, thermal vacuum testing, and spacecraft level testing. There have been two novel developments in the characterization of the phased-array system. The first is a “gain envelope” response, which is a measurement of the gain of the array at the intended scan angle as the array is electrically scanned in 1° increments. This response was produced through a combination of hardware and test software to synchronize the gain measurement with the mechanical and electrical scanning. The second is a phase steering verification test that utilizes couplers in each steered element in conjunction with previously measured element patterns to confirm that the antenna beam is steered properly. This method allows functional verification of the phased-array system while radiating into an RF absorber-lined hat during spacecraft-level tests.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30