AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Near Field

Polarization correction of spherical near-field data
J.R. Jones (Scientific-Atlanta, Inc.),D.W. Hess (Scientific-Atlanta, Inc.), November 1984

This paper describes the relationship of probe polarization correction to probe-pattern corrected and non-probe-pattern-corrected spherical near-field measurements. A method for reducing three-antenna polarization data to a form useful for polarization correction is presented. The results of three-antenna measurements and the effects of polarization correction on spherical near-field measurements are presented.

Planar Near-Field Measurements Using Hexagonal Sampling
L.E. Corey (Georgia Institute of Technology),E. B. Joy (Georgia Institute of Technology), November 1984

This paper describes a new planar near-field measurement technique in which near-field data is collected in a hexagonal rather than a rectangular format. It is shown that the hexagonal method is more efficient than the rectangular technique in that a lower sampling density is required and the hexagonally shaped measurement surface is more compatible with most antenna apertures than the conventional rectangular measurement surface.

Cylindrical near field test facility for UHF Television Transmitting Antennas
J.A. Donovan (Harris Corporation),E.B. Joy (Georgia Institute of Technology), November 1984

This paper describes a horizontal, cylindrical surface, near-field measurement facility which was designed and constructed in 1984 and is used for the determination of far field patterns from near field measurement of UHF television transmitting antennas. The facility is also used in antenna production as a diagnostic and alignment tool.

Cylindrical near field test facility for UHF Television Transmitting Antennas
J.A. Donovan (Harris Corporation),E.B. Joy (Georgia Institute of Technology), November 1984

This paper describes a horizontal, cylindrical surface, near-field measurement facility which was designed and constructed in 1984 and is used for the determination of far field patterns from near field measurement of UHF television transmitting antennas. The facility is also used in antenna production as a diagnostic and alignment tool.

Structural Design of a vertical antenna boresight 18.3- by 18.3-M planar near-field antenna measurement system
G. R. Sharp (NASA),P. A. Trimarchi (NASA) J.S. Wanhainen (NASA), November 1984

The near-field antenna testing technique is now an established testing approach. It is based on the work done over a twenty-year period by the National Bureau of Standards (Boulder, Colorado), The Georgia Institute of Technology and others. The near-field technique is used for large aperture, high frequency antennas where the antenna to probe separation necessary to test in the far-field of the antenna is prohibitively large.

Real time remote data gathering
D. Kadron (Westinghouse Electric Corporation), November 1984

The ability to gather real-time data from a remote site is of significant value in the far-field test of large scale non-reciprocal antenna arrays. With the advent of microprocessors, digitally controlled test equipment, and high speed data links, what was once impossible has not only become feasible but also economically realizable. This paper discusses the design of a remote data-gathering capability currently on-line at the Westinghouse Ridge Road Antenna Range. The system described is a computer-controlled phase and amplitude measuring technique remoted over a 1/3 mile range with a 56K baud fiber-optics data link. Considerations of system configuration, timing, protocol, error-detection and self-diagnostics are discussed.

Obtaining bistatic data utilizing a monostatic measurement system
P. Zuzolo (Fairchild Republic), November 1984

A monostatic radar measurement system at the U.S. Navy Pacific Missile Test Center (PACMISTESTCEN) located at Pt. Mugu, California was utilized to obtain incidence angle performance of radar absorbing structure (RAS) panels. The traditional methods of obtaining reflectivity data for absorptive materials over a range of incidence angles is a technique known as the NRL arch. Developed over 30 years ago by the U.S. Naval Research Laboratory, the technique utilizes moveable bistatic antennas on an arch equidistant from the test material panel in order to obtain incidence angle data.

Effects of the alignment errors on ahorn's crosspolar pattern measurements. Application to L-SAT propagation package antennas.
M. Calvo (Universidad Potitecnica de Madrid),J.L. Besada (Universidad Potitecnica de Madrid), November 1984

When low crosspolar pattern measurements are required, as in the case of the L-SAT Propagation Package Antennas (PPA) with less than -36 dB linear crosspolarization inside the coverage zone, the use of good polarization standards is mandatory (1). Those are usually electroformed pyramidal horns that produce crosspolar levels over the test zone well below the -60 dB level typically produced by the reflectivity of anechoic chambers. In this case the alignment errors (elevation, azimuth and roll as shown in fig. 1) can become important and its efects on measured patterns need to be well understood.

Ultra low sidelobe testing by planar near field scanning
K. R. Grimm (Technology Service Corporation), November 1984

An innovative technique has been developed for accurately measuring very low Sidelobe Antenna patterns by the method of planar near field probing. The technique relies on a new probe design which has a pattern null in the direction of the test antenna’s steered bean direction. Simulations of the near field measurement process using such a probe show that -60dB peak side-lobes will be accurately measured (within established bounds) when the calibrated near field dynamic range does not exceed 40 dB. The desireable property of the new probe is its ability to “spatially filter” the test antenna’s spectrum by reduced sensitivity to main beam ray paths. In this way, measurement errors which usually increase with decreasing near field signal level are minimized. The new probe is also theorized to have improved immunity to probe/array multipath and to probe-positioning errors. Plans to use the new probe on a modified planar scanner during tests with the AWACS array at the National Bureau of Standards will be outlined.

Rolled edge modification of compact range reflector
W.D. Burnside (Ohio State University),B. M. Kent (Air Force) M. C. Gilreath (NASA), November 1984

The compact range is an electromagnetic measurement system used to simulate a plane wave illuminating an antenna or scattering body. The plane wave is necessary to represent the actual use of the antenna or scattering from a target in a real world situation. Traditionally, a compact range has been designed as an off-set fed parabolic reflector with a knife edge or serrated edge termination. It has been known for many years that the termination of the parabolic surface has limited the extent of the plane wave region or, more significantly, the antenna or scattering body size that can be measured in the compact range. For example, the Scientific Atlanta (SA) Compact Range is specified to be limited to four foot long antennas or scattering bodies as shown in their specifications. Note that the SA compact range uses a serrated edge treatment as shown in Figure 1. This system uses a parabolic reflector surface which is approximately 12 square feet so that most of the reflector surface is not usable based on the 4 foot square plane wave sector. As a result, the compact range has had limited use as well as accuracy which will be shown later. In fact, the compact range concept has not been applied to larger systems because of the large discrepancy between target and reflector size. In summary, the target or antenna sizes that can be measured in the presently available compact range systems are directly related to the edge treatment used to terminate the reflector surface.

The Statistics of measured antenna patterns
G.E. Evans, November 1984

The parameters measured on antennas vary from unit-to-unit depending on the manufacturing and test tolerances. It is often useful to be able to predict the statistical distribution expected in production for properties such as gain or sidelobes based on limited data on a few samples. In this report extensive data from production line antenna testing on several reflector designs was analyzed to determine the nature of the distributions. Although each antenna design is different, there is evidence that useful predictions can be made when the appropriate scale factors are used.

Applications of new 16-bit SD-2000 digital synchro monitors
G.E. Bowie (Lockheed-California Company),M.B. Petri (Petri Associates), November 1984

Progress is reported on use of synchro to digital converter modules. The particular modules applied are 16 bit SDC-361 units, manufactured by ILC Data Device Corporation. Two converters are included in each pf five Model SD-2000 synchro monitors designed and fabricated by Petri Associates and acquired by the Lockheed-California Company for the antenna test facility of the Kelly Johnson R&D Center at Rye Canyon. Applications depended upon learning how Type 23TX6 synchro transmitter pairs in the model towers and elevation-over-azimuth positioners at the facility can be electrically zeroed to match the 16 bit resolution of SDC-361 synchro to digital converters.

A New antenna test facility at General Electric Space Systems Division in Valley Forge, PA.
R. Meier (General Electric Co.), November 1984

This paper describes the new antenna test facility under construction at General Electric Space Systems Division in Valley Forge, PA. The facility consists of a shielded anechoic chamber containing both a Compact Range and a Spherical Near-Field Range. In addition, it provides for a 700’ boresight range through an RF transparent window. The facility will be capable of testing antenna systems over a wide frequency range and will also accommodate an entire spacecraft for both system compatibility and antenna performance tests.

A New antenna test facility at General Electric Space Systems Division in Valley Forge, PA.
R. Meier (General Electric Co.), November 1984

This paper describes the new antenna test facility under construction at General Electric Space Systems Division in Valley Forge, PA. The facility consists of a shielded anechoic chamber containing both a Compact Range and a Spherical Near-Field Range. In addition, it provides for a 700’ boresight range through an RF transparent window. The facility will be capable of testing antenna systems over a wide frequency range and will also accommodate an entire spacecraft for both system compatibility and antenna performance tests.

Development and evaluation of the 500M ground-reflection antenna test range of the CSIR, Pretoria, South Africa
D. E. Baker (National Institute for Aeronautics and Systems Technology), November 1984

This paper describes the development and evaluation of a general purpose ground-reflection antenna test range operated by the Council for Scientific and Industrial Research (CSIR). The range is 500 m long and the design is such to allow operation in the ground-reflection mode at L, S, and X bands. The physical configuration of the range is presented to illustrate some of the practical problems experienced in implementing the range design. An experimental evaluation programme was conducted to determine the state of the incident field over the test aperture. Some of these results are presented to show the performance achieved with the range design.

Using the HP 8510 network analyzer to measure the radiation patterm of a dipole antenna using time domain and gating to remove the effects of ground clutter
J. W. Boyles (Hewlett-Packard Company), November 1984

A classical problem encountered when measuring the far-field radiation pattern of an antenna in a medium-distance range is the degradation that occurs when undesirable reflections (from the ground or nearby objects) are present. To reduce this problem, the source and test antennas are often installed on towers to remove them from the reflective objects, RF absorptive materials are used to reduce the magnitude of the reflected signals, and often the reflective objects in the range are adjusted in order to null out the reflections and “clean up” the range. These solutions are often limited in their effectiveness and can be prohibitively expensive to implement.

Extension of plane wave scattering matrix theory of antenna-antenna interactions to three antennas: A Near-Field Radar Cross Section Concept
M. A. Dinallo (The BDM Corporation), November 1984

This paper presents a three-antenna plane-wave scattering-matrix (PWSM) formulation and a formal solution. An example will be demonstrated in which two of the three antennas are electromagnetically identical (the transmitter and the receiver) and the third (the scatterer) has arbitrary electromagnetic properties. A reduced reflection integral-matrix will be discussed which describes the transmit, scatter, receive (TSR) interaction. An antenna scatterer spectral tensor Greens function is identified. In this formulation the transmit spectrum will be scattered by the third arbitrary antenna (target) and this scattered spectrum may be considered to have originated from a transmitting antenna. Near-field antenna measurement techniques are applicable with determine the electric (scattered) field spectral density function.1, 2 If a second deconvolution is applied, a transmit probe corrected spectral density function or scattering tensor can be determined in principle. In either case, a near- or far-electric field can be calculated and a radar cross section determined.

Satellite near field test facility
R.D. Ward (Hughes Aircraft Company), November 1984

The paper describes a near field facility developed at Hughes Aircraft Space and Communications Group for the purpose of performing measurements on satellite antennas. The facility is designed for planar near field scanning with capability for adding cylindrical scanning. The facility has a scanner with a 21 foot square range and is capable of measuring large antennas with operating frequencies up to 15 GHZ. The measurement system is designed for testing multi-beam, multi-frequency antennas. Data collection, scan control and data analysis functions are all controlled by a single computer system. Growth plans include the addition of an array processor for the ability to perform Fast Fourier Transforms in near real time. Results for the antennas which have been measured will be shown along with far field range data for comparison.

Near field RCS measurements
E.B. Joy (Georgia Institute of Technology), November 1984

A planar surface, near-field measurement technique is presented for the near-field measurement of monostatic radar cross-section. The theory, system configuration and measurement procedure for this technique are presented. It is shown that the far field radar cross-section can be determined from the near field measurements. An associate near-field radar cross-section measurement technique is presented for the measurement of bistatic near field radar cross-section. The bistatic technique requires a plane wave illuminator in addition to the planar surface near field measurement system. A small compact range is used as the bistatic illuminator. Bistatic near-field measurements are presented for a simple target.

Near field RCS measurements
E.B. Joy (Georgia Institute of Technology), November 1984

A planar surface, near-field measurement technique is presented for the near-field measurement of monostatic radar cross-section. The theory, system configuration and measurement procedure for this technique are presented. It is shown that the far field radar cross-section can be determined from the near field measurements. An associate near-field radar cross-section measurement technique is presented for the measurement of bistatic near field radar cross-section. The bistatic technique requires a plane wave illuminator in addition to the planar surface near field measurement system. A small compact range is used as the bistatic illuminator. Bistatic near-field measurements are presented for a simple target.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31