AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Near Field

Displaced phase center antenna measurements for space based radar applications
H.M. Aumann (Massachusetts Institute of Technology),A.J. Fenn (Massachusetts Institute of Technology), F.G. Willwerth (Massachusetts Institute of Technology), November 1986

An investigation of the use of array mutual coupling measurements, to evaluate displaced phase center antenna (DPCA) performance, is made. The details of a subscale space based radar (SBR) DPCA phased array and the array mutual coupling technique are discussed. DPCA results are quantified experimentally under a number of test conditions. It is shown that the test array beam decorrelation computed from array mutual coupling data, is in good agreement with both theoretical predictions, planar near field measurements and direct far field measurements.

Sample spacing requirements for spherical surface near-field measurements
E.B. Joy (Georgia Institute of Technology),J.B., Jr. Rowland (Georgia Institute of Technology), November 1985

This paper presents results of an on-going research program at Georgia Tech into the theory and technique of antenna measurements. Specifically this paper presents the results of an investigation into sampling requirements for electromagnetic measurements performed on a surface enclosing an antenna under test (AUT).

Near field range facility design
D. Slater (Antenna Systems Laboratory), November 1985

Lessons learned in the design of large, planar near field ranges used at millimeter wavelengths are described. Specific issues include facility design, RF equipment, scanner design, dynamic position measurement, servo control and software requirements.

An Outdoor UHF cylindrical surface near-field range
K.W. Cozad (Harris Corporation),E.B. Joy (Georgia Institute of Technology), November 1985

This paper describes the Harris Corporation, Broadcast Group, Outdoor, Cylindrical, Near-Field Antenna Range. The range is located on a bluff overlooking the Mississippi River flood plain near Quincy. IL and is used for the alignment and testing of UHF-TV transmitting antennas.

Antenna near-field test facility at Ericsson Radio Systems AB
P. Malmborg,A. Molker, C. Barnarp, November 1985

During the last year ERICSSON RADIO SYSTEMS in Moelndal, Sweden, has had a near-field test facility in operation in a clean-room environment. It was been used for spherical near-field testing but during the next year a large planar scanner will be installed in the room.

Monostatic near-field radar cross-section measurement
E.B. Joy (Georgia Institute of Technology),B.K. Rainer (Georgia Institute of Technology), B.L. Shirley (Georgia Institute of Technology), November 1985

This paper presents some current measurement results obtained as part of a research program to investigate the theory, technique, apparatus and practicality of monostatic near-field radar cross-section measurement (MNFRCSM).

The Coefficient file: a basic feature of spherical near-field software architecture
D.W. Hess (Scientific-Atlanta Inc.), November 1985

The matrix of scattering coefficients which describes the transfer of excitation between the port of an antenna and free space forms a fundamental description of that antenna. In carrying out the spherical near-field to far-field transforms for a probe-corrected measurement one is required to utilize the scattering coefficients of the probe antenna. An essential feature of any software system which supports probe-corrected measurements is the capability of analyzing and storing these coefficients.

Automated three-antenna polarization measurements using digital signal processing
J.R. Jones (Scientific-Atlanta, Inc.),D.E. Hess (Scientific-Atlanta, Inc.), November 1985

In this paper we present a three-antenna measurement procedure which yields the polarization of an unknown antenna to an accuracy comparable to that of the improved method of Newell. The complete method is based on step-scan motion of the two polarization axes on which the antenna pairs are mounted. As a special case this step-scan procedure includes the usual single axis polarization pattern method of polarization measurement. This three antenna polarization measurement method can be readily automated and is carried out straightforwardly with the assistance of a minicomputer for data acquisition and data reduction. The data reduction method is based on conventional digital Fourier transform techniques and has the advantage of inherent noise rejection. It utilizes a large number of sample points which greatly overdetermine the parameters to be measured. The method has been verified experimentally with measurements made on multiple overlapping sets of three antennas, as is conventional for this kind of procedure. The data are presented for broad-beam antennas of the type used as near field probe horns.

Alternative sampling techniques for more efficient planar near-field measurements
L.E. Corey (Georgia Tech Research Institute),D.R. O'Neil (Georgia Tech Research Institute), November 1985

Two alternative sampling techniques for planar near-field measurements are discussed. The first technique reduces the number of data points taken by 50% by measuring the field and its differential in one direction at each point. The second technique samples the field on a hexagonal lattice and allows reduction in the number of samples taken by up to 25%. Far-field patterns for an X-band antenna calculated from these alternative near-field sampling schemes are presented and compared with the far-field patterns calculated using conventional planar near-field techniques.

Spherical near-field thermal drift correction using a return-to-peak technique
G.B. Melson (Scientific-Atlanta Inc.),D.W. Hess (Scientific-Atlanta Inc.), J.R. Jones (Scientific-Atlanta Inc.), November 1985

Over the long periods of time needed to acquire spherical near-field data, thermal drift of the system can cause errors in the measurement. The effect of thermal-drift can be removed, if it is monitored during the scanning process. This is accomplished by periodically returning the probe to the near-field peak during acquisition. The same point is re-measured upon each return; and the variations in phase and amplitude are used to produce a correction factor which is applied to each point in the near-field data file. This paper describes the return-to-peak method and the correction algorithm. Experimental results will also be presented.

Optimum near-field probing for improved low sidelobe measurement accuracy
J. Hoffman (Technology Service Corporation),K. Grimm (Technology Service Corporation), November 1985

A novel technique for improved accuracy of sidelobe measurement by planar near field probing has been developed and tested on the modified near field scanner at the National Bureau of Standards. The new technique relies on a scanning probe which radiates an azimuth plane null along the test antenna’s mainbeam steering direction. In this way, the probe acts as a mainbeam filter during probe correction processing, and allows the sidelobe space wavenumbers to establish the dynamic range of the near field measurement. In this way, measurement errors which usually increase with decreasing near field signal strength are minimized. The probe also discriminates against error field which have propagation components in the direction of mainbeam steering, such errors may be due to multipath or scanner Z-position tolerances. Near field probing tests will be described which demonstrate measurement accuracies from tests with two slotted waveguide arrays—the Ultralow Sidelobe Array (ULSA) and the Airborne Warning and Control System (AWACS) array. Results show that induced near field measurement error will generate detectable far field sidelobe errors, within established bounds, at the –60dB level. The utility of te probe to detect low level radar target scattering will also be described.

Optimum near-field probing for improved low sidelobe measurement accuracy
J. Hoffman (Technology Service Corporation),K. Grimm (Technology Service Corporation), November 1985

A novel technique for improved accuracy of sidelobe measurement by planar near field probing has been developed and tested on the modified near field scanner at the National Bureau of Standards. The new technique relies on a scanning probe which radiates an azimuth plane null along the test antenna’s mainbeam steering direction. In this way, the probe acts as a mainbeam filter during probe correction processing, and allows the sidelobe space wavenumbers to establish the dynamic range of the near field measurement. In this way, measurement errors which usually increase with decreasing near field signal strength are minimized. The probe also discriminates against error field which have propagation components in the direction of mainbeam steering, such errors may be due to multipath or scanner Z-position tolerances. Near field probing tests will be described which demonstrate measurement accuracies from tests with two slotted waveguide arrays—the Ultralow Sidelobe Array (ULSA) and the Airborne Warning and Control System (AWACS) array. Results show that induced near field measurement error will generate detectable far field sidelobe errors, within established bounds, at the –60dB level. The utility of te probe to detect low level radar target scattering will also be described.

Estimation of the size, location, and power-density of the 'bright spot' in a compact antenna range
P.N. Richardson (Texas Instruments Incorporated), November 1985

When performing far-field testing on large-aperture antennas, the range length 2D2/? (that is needed to achieve a ‘flat’ phase front at the test plane) is sometimes inconviniently long. In these instances, the compact range of Figure 1 may be used as an alternate. In this range, the spherical wave radiated by the range source antenna is converted to an approximately plane wave by a large parabolic reflector. The antenna to be tested is immersed in this plane wave, at a location that is well within the near-field of the reflector. Also, for many antennas of interest, the reflector is likewise in the near-field of the test antenna, although this is not a requirement. (For those cases where the reflector is in the far field of the test antenna, there is little motivation to use a compact range, since a conventional far-field range of the same length would suffice.)

Inverse synthetic aperture imaging radar
D. Slater (Antenna Systems Laboratory), November 1985

The accurate measurement of radar target scattering properties is becoming increasingly important in the development of stealth technology. This paper describes a low cost imaging Radar Cross Section (RCS) instrumentation radar capable of measuring both the amplitude and phase response of low RCS targets. The RCS instrumentation radar uses wideband FM wave-forms to achieve fine range resolution providing RCS data as a function of range, frequency and aspect. With additional data processing the radar can produce fully focused Inverse Synthetic Aperture Radar (ISAR) images and perform near field transformations of the data to correct the phase curvature across the target region. The radar achieves a range resolution of 4 inches at S-band and a sensitivity of –70 dBsm at a 30 ft range.

A New antenna test facility at General Electric Space Systems Division in Valley Forge, PA.
R.J. Meier (General Electric Co.), November 1985

This paper describes the new antenna test facility now in operation at General Electric Space Systems Division in Valley Forge, PA. The antenna test facility is located in a new building 155’ x 74’ x 53’ high. It consists of a shielded anechoic room 60’ x 56’ x 35’ high which contains both a Compact Range and a Spherical Near Field Range, instrumented over the Frequency Range 1-100 GHz to perform automatic and manual measurements of antenna characteristics. In addition it provides for a 700’ boresight range accessible through large doors with an RF trans-parent window. A 3-axis positioner can accommodate antenna apertures up to 20’. The facility is used for both, testing of antenna systems and testing of entire spacecraft for electromagnetic compatibility and interference.

Pulsed, computer-controllable receiver and exciter having wide instantaneous bandwidth for testing active-element phased arrays
P.N. Richardson (Texas Instruments Incorporated), November 1985

This paper describes a receiver and exciter built by Texas Instruments for automated testing of electronic-scan antennas. The equipment is suitable for both near-field and far-field testing, and is programmable through a General-Purpose Interface Bus (GPIB) conforming to IEEE Standard 488. A two-channel design is described, but the technology is equally applicable to receivers from one to three (or more) channels. The receiver outputs are digitized as 10-bit I and Q (In-phase and Quadrature) components.

G/T measurement of highly directive antenna systems
G.M. Briand (Harris Corporation), November 1984

A technique for improving the accuracy of G/T measurements of highly directive antennas is introduced. The technique presents was developed to overcome uncertainties in ephemeral information, antenna positioning, system gain stability, and other random and nonrandom phenomena. The particular application discussed uses Casseiopeia-A as a noise source but the technique can be adapted for use with other extraterrestrial noise sources.

Millimeter wave antenna measurements
M. S. Morse (Boeing Aerospace Company), November 1984

Millimeter wave antenna measurements are hampered by a lack of cost effective automated test equipment and the necessity of using unwieldy waveguide set-ups. This paper describes some practical considerations in using readily available test equipment to perform accurate, repeatable antenna measurements. Experimental results of gain, polarization and sidelobe level measurements will be discussed and compared with calculated results.

Planar Near-Field Measurements Using Hexagonal Sampling
L.E. Corey (Georgia Institute of Technology),E. B. Joy (Georgia Institute of Technology), November 1984

This paper describes a new planar near-field measurement technique in which near-field data is collected in a hexagonal rather than a rectangular format. It is shown that the hexagonal method is more efficient than the rectangular technique in that a lower sampling density is required and the hexagonally shaped measurement surface is more compatible with most antenna apertures than the conventional rectangular measurement surface.

RCS Measurements with the HP8510 Network Analyzer
J. Boyles (Hewlett-Packard Company), November 1984

Paper not available for presentation.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30