AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Far Field

Advances in Instrumentation and Positioners for Millimeter-Wave Antenna Measurements
Bert Schluper,Patrick Pelland, November 2014

Applications using millimeter-wave antennas have taken off in recent years. Examples include wireless HDTV, automotive radar, imaging and space communications. NSI has delivered dozens of antenna measurement systems operating at mm-wave frequencies. These systems are capable of measuring a wide variety of antenna types, including antennas with waveguide inputs, coaxial inputs and wafer antennas that require a probing station. The NSI systems are all based on standard mm-wave modules from vendors such as OML, Rohde & Schwarz and Virginia Diodes. This paper will present considerations for implementation of these systems, including providing the correct RF and LO power levels, the impact of harmonics, and interoperability with coaxial solutions. It will also investigate mechanical aspects such as application of waveguide rotary joints, size and weight reduction, and scanner geometries for spherical near-field and far-field measurements. The paper will also compare the performance of the various mm-wave solutions. Radiation patterns acquired using some of these near-field test systems will be shared, along with some of the challenges encountered when performing mm-wave measurements in the near-field.

Source Reconstruction for Radome Diagnostics
Bjorn Widenberg,Kristin Persson, Mats Gustavsson, Gerhard Kristensson, November 2014

Radome enclose antennas to protect them from environmental influences. Radomes are ideally electrically transparent, but in reality, radomes introduce transmission loss, pattern distortion, beam deflection, etc. Radome diagnostics are acquired in the design process, the delivery control, and in performance verification of repaired and newly developed radome. A measured near or far-field may indicate deviations, e.g., increased side-lobe levels or boresight errors, but the origin of the flaws are not revealed. In this presentation, source reconstruction from measured data is used for radome diagnostics. Source reconstruction is a useful tool in applications such as non-destructive diagnostics of antennas and radomes. The radome diagnostics is performed by visualizing the equivalent currents on the surface of the radome. Defects caused by metallic and dielectric patches are imaged from far-field data. The measured far-field is related to the equivalent surface current on the radome surface by using a surface integral representation together with the extinction theorem. The problem is solved by a body of revolution method of moment (MoM) code utilizing a singular value decomposition (SVD) for regularization. Phase shifts, an effective insertion phase delay (IPD), caused by patches of dielectric tape attached to the radome surface, are localized. Imaging results from three different far-field measurement series at 10 GHz are presented. Specifically, patches of various edge sizes (0.5?2.0 wavelengths), and with the smallest thickness corresponding to a phase shift of a couple of degrees are imaged. The IPD of one layer dielectric tape, 0.15 mm, is detected. The dielectric patches model deviations in the electrical thickness of the radome wall. The results from the measurements can be utilized to produce a trimming mask, which is a map of the surface with instructions how the surface should be altered to obtain the desired properties for the radome. Diagnosis of the IPD on the radome surface is also significant in the delivery control to guarantee manufacturing tolerances of radomes.

Nearfield RCS Measurements of Full ScaleTargets Using ISAR
Christer Larsson, November 2014

Near field Radar Cross Section (RCS) measurements and Inverse Synthetic Aperture Radar (ISAR) are used in this study to obtain geometrically correct images and far field RCS. The methods and the developed algorithms required for the imaging and the RCS extraction are described and evaluated in terms of performance in this paper. Most of the RCS measurements on full scale objects that are performed at our measurement ranges are set up at distances shorter than those given by the far field criterion. The reasons for this are e.g., constraints in terms of budget, available equipment and ranges but also technical considerations such as maximizing the signal to noise in the measurements. The calibrated near-field data can often be used as recorded for diagnostic measurements. However, in many cases the far field RCS is also required. Data processing is then needed to transform the near field data to far field RCS in those cases. A straightforward way to image the RCS data recorded in the near field is to use the backprojection algorithm. The amplitudes and locations for the scatterers are then determined in a pixel by pixel imaging process. The most complicated part of the processing is due to the near field geometry of the measurement. This is the correction that is required to give the correct incidence angles in all parts of the imaged area. This correction has to be applied on a pixel by pixel basis taking care to weigh the samples correctly. The images obtained show the geometrically correct locations of the target scatterers with exceptions for some target features e.g., when there is multiple or resonance scattering. Separate features in the images can be gated and an inverse processing step can be performed to obtain the far field RCS of the full target or selected parts of the target, as a function of angle and frequency. Examples of images and far field RCS extracted from measurements on full scale targets using the ISAR processing techniques described in this paper will be given.

EIRP & SFD Measurement Methodology for Planar Near-Field Antenna Ranges
Daniël Janse van Rensburg,Karl Haner, November 2014

Equivalent isotropically radiated power (EIRP) and Saturating flux density (SFD) are two system level parameters often sought during characterizing of spacecraft systems. The EIRP quantity is the power that an isotropic radiator will have to transmit to lead to the same power density that the AUT will effect at a specific angle of interest. A convenient measurement technique is to set up a standard gain antenna as receiver in the far-field of an AUT and to then determine EIRP by measuring the power at the port of the standard gain receiving antenna.  Since the distance is known the EIRP can be calculated. SFD is the flux required to saturate the receiver of the antenna under test and is also usually determined on a far-field range. The philosophy of this measurement is to determine the saturation level of the receiver and this is typically achieved by gradually increasing the input power level of the transmitter. This process continues as long as the receiver response linearly tracks the increase in power of the transmitter and is terminated once the receiver is saturated.  Thus, SFD can be interpreted as being the receive system parameter analogy of the transmit system parameter EIRP. There is a common misconception that these parameters cannot be measured on a near-field range and that they require far-field (or far-field equivalent, i.e. compact range) conditions for a valid measurement to be made. However, the principles for measuring both of these parameters in a planar near-field range (PNF) were presented in [1]: An EIRP technique is presented in [1] equation 32 and this approach relies on a complex integration of the measured near-field power, the near-field probe gain and a single power measurement at a reference location. A SFD technique is presented in [1] equation 39. This technique also relies on a complex integration of the measured near-field power, the near-field probe gain and a single transmitting probe power measurement at a reference location. Although these descriptions are theoretically concise their execution is not obvious [2] and as a result, there still seems to be hesitation in making (and trusting) these measurements in industry. This paper intends to provide further insight into measuring these two parameters in a PNF range and offers test procedures outlining the steps involved in doing so. The principle goal is to offer further explanation to illuminate the underlying principles. The work presented here is not new, but is presented as a tutorial on this illusive subject. [1]     Newell, Ward and McFarlane, “Gain and Power Parameter Measurements Using Planar Near-Field Techniques”, IEE APS Transactions, Vol 36, No. 6, June 1988. [2]     Masters & Young, “Automated EIRP measurements on a near-field range”, Antenna Measurement Techniques Association Conference, September 30 - October 3, 1996.

Effects of a Non-Ideal Plane Wave on Compact Range Measurements
David Wayne,Jeffrey Fordham, John McKenna, November 2014

Performance requirements for compact ranges are typically specified as metrics describing the quiet zone's electromagnetic-field quality. The typical metrics are amplitude taper and ripple, phase variation, and cross polarization. Acceptance testing of compact ranges involves phase probing of the quiet zone to confirm that these metrics are within their specified limits. It is expected that if the metrics are met, then measurements of an antenna placed within that quiet zone will have acceptably low uncertainty. However, a literature search on the relationship of these parameters to resultant errors in antenna measurement yields limited published documentation on the subject. Various methods for determining the uncertainty in antenna measurements have been previously developed and presented for far-field and near-field antenna measurements. An uncertainty analysis for a compact range would include, as one of its terms, the quality of the field illuminating on the antenna of interest. In a compact range, the illumination is non-ideal in amplitude, phase and polarization. Error sources such as reflector surface inaccuracies, chamber-induced stray signals, reflector and edge treatment geometry, and instrumentation RF leakage, perturb the illumination from ideal.

Investigations on Gain Measurement Accuracies at Limited Far-Field Conditions
Engin Gülten,Andreas Drexler, Josef Migl, Jürgen Habersack, November 2014

Driven by the mobile data communications needs of market broadband antennas at the upper frequency bands are already state-of-the-art, e.g. at the Ka-Band. For the characterization of an antenna the antenna gain is one of the major test parameters. This measurement task is already challenging for standard applications at the Ka-Band. However, for the calibration of remote station antennas utilized in high precision test facilities, e.g. the compact range, even higher measurement accuracies are typically required in order to fulfil the overall system performance within the later test facility. Therefore the requirement for this investigation is to improve the measurement set-up and also the steps to get a failure budget which is better than ± 0.15 dB. Every antenna gain measurement technique is affected by required changes in the measurement setup, e.g. the Device under Test (DUT) or the remote station, respectively. This results for example in a variation of mismatch with resulting measurement errors. To determine and compensate the occurred mismatches, the scattering parameters of the involved components have to be measured and be evaluated with a corresponding correction formula. To quantify the effect for the gain measurement accuracy the remaining uncertainty of the mismatch correction values is examined. Another distortion is caused by multiple reflections between the antenna apertures. To reduce this error source, four additional measurements each with a decreased free space distance should be performed. In addition to the common methods, this paper explains in detail an advanced error correction method by using the singular value decomposition (SVD) and compares this to the standard mean value approach. Finally the restricted distance between both antennas within the applied anechoic far-field test chamber has to be analysed very critically and optionally corrected for the far-field gain at an infinite distance in case the measurement distance is fulfilling the minimum distance requirement, only. The paper will discuss all major error contributions addressed above, show correction approaches and verify these algorithms with exemplary gain measurements in comparison to the expected figures.

Advantages and Disadvantages of Various Hemispherical Scanning Techniques
Eric Kim,Anil Tellakula, November 2014

When performing far field or near field antenna measurements on large antennas, it is often necessary to have various types of mechanical positioning systems to achieve the required hemispheric scans.  Measurement systems employing a single-arm gantry, a dual-arm gantry, a fixed arch moving probe, or a fixed arch multi-probe have been paired with either an azimuth positioner or a vehicle turntable to provide hemispheric scanning of the object being tested. This paper will highlight the key characteristics of various scanning methods making comparisons between the different techniques.  Positioning and system accuracy, speed, stowing ability, calibration, frequency range, upgradability, relative cost and other key aspects of the various techniques will be discussed in detail to help the end user during the system design and selection process.  In addition, the paper will highlight novel hemispheric and truncated spherical scanning approaches. In many applications, the success of the entire project often centers on the judicious selection of the positioning subsystem.  This paper will provide guidance toward making the proper selection of the scanning concept as well as of the positioning system.

Experimental Tests on an Effective Near-Field to Far-Field Transformation with Spherical Scan From Irregularly Spaced Data
Francesco D'Agostino,Flaminio Ferrara, Jeffrey A. Fordham, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi, November 2014

The near-field – far-field (NF–FF) transformation with spherical scanning is particularly interesting, since it allows the reconstruction of the complete radiation pattern of the antenna under test (AUT) [1]. In this context, the application of the nonredundant sampling representations of the electromagnetic (EM) fields [2] has allowed the development of efficient spherical NF–FF transformations [3, 4], which usually require a number of NF data remarkably lower than the classical one [1]. In fact, the NF data needed by this last are accurately recovered by interpolating a minimum set of measurements via optimal sampling interpolation (OSI) expansions. A remarkable measurement time saving is so obtained. However, due to an imprecise control of the positioning systems and their finite resolution, it may be impossible to exactly locate the probe at the points fixed by the sampling representation, even though their position can be accurately read by optical devices. As a consequence, it is very important to develop an effective algorithm for an accurate and stable reconstruction of the NF data needed by the NF–FF transformation from the acquired irregularly spaced ones. A viable and convenient strategy [5] is to retrieve the uniform samples from the nonuniform ones and then reconstruct the required NF data via an accurate and stable OSI expansion. In this framework, two different approaches have been proposed. The former is based on an iterative technique, which converges only if there is a biunique correspondence associating at each uniform sampling point the nearest nonuniform one, and has been applied in [5] to the uniform samples reconstruction in the case of cylindrical and spherical surfaces. The latter relies on the singular value decomposition method, does not exhibit the above limitation, but can be conveniently applied only if the uniform samples recovery can be reduced to the solution of two independent one-dimensional problems [6]. Both the approaches have been applied and numerically compared with reference to the positioning errors compensation in the spherical NF–FF transformation for long antennas [7] using a prolate ellipsoidal AUT modelling. The goal of this work is just to validate experimentally the application of these approaches to the NF–FF transformation with spherical scanning for elongated antennas [4], using a cylinder ended in two half-spheres for modelling them. The experimental tests have been performed in the Antenna Characterization Lab of the University of Salerno, provided with a roll over azimuth spherical NF facility supplied by MI Technologies, and have fully assessed the effectiveness of both the approaches.  [1] J.E. Hansen, ed., Spherical Near-Field Antenna Measurements , IEE Electromagnetic Waves Series, London, UK, Peter Peregrinus, 1998. [2] O.M. Bucci, C. Gennarelli, C. Savarese, “Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples,” IEEE Trans. Antennas Prop. , vol. 46, pp. 351-359, 1998. [3] O.M. Bucci, F. D’Agostino, C. Gennarelli, G. Riccio, C. Savarese, “Data reduction in the NF–FF transformation technique with spherical scanning,” Jour. Electr. Waves Appl ., vol. 15, pp. 755-775, June 2001. [4] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, M. Migliozzi, “Effective antenna modellings for NFFF transformations with spherical scanning using the minimum number of data,” Int. Jour. Antennas Prop ., vol. 2011, Article ID 936781, 11 pages, 2011 [5] O.M. Bucci, C. Gennarelli, G. Riccio, C. Savarese, “Electromagnetic fields interpolation from nonuniform samples over spherical and cylindrical surfaces,” IEE Proc. Microw. Antennas Prop ., vol. 141, pp. 77-84, April 1994. [6] F. Ferrara, C. Gennarelli, G. Riccio, C. Savarese, “Far field reconstruction from nonuniform plane-polar data: a SVD based approach,” Electromagnetics,  vol. 23, pp. 417-429, July 2003 [7] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, M. Migliozzi, “Two techniques for compensating the probe positioning errors in the spherical NF–FF transformation for elongated antennas,” The Open Electr. Electron. Eng. Jour. , vol. 5, pp. 29-36, 2011.

Experimental Tests on an Effective Near-Field to Far-Field Transformation with Spherical Scan From Irregularly Spaced Data
Francesco D'Agostino,Flaminio Ferrara, Jeffrey A. Fordham, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi, November 2014

The near-field – far-field (NF–FF) transformation with spherical scanning is particularly interesting, since it allows the reconstruction of the complete radiation pattern of the antenna under test (AUT) [1]. In this context, the application of the nonredundant sampling representations of the electromagnetic (EM) fields [2] has allowed the development of efficient spherical NF–FF transformations [3, 4], which usually require a number of NF data remarkably lower than the classical one [1]. In fact, the NF data needed by this last are accurately recovered by interpolating a minimum set of measurements via optimal sampling interpolation (OSI) expansions. A remarkable measurement time saving is so obtained. However, due to an imprecise control of the positioning systems and their finite resolution, it may be impossible to exactly locate the probe at the points fixed by the sampling representation, even though their position can be accurately read by optical devices. As a consequence, it is very important to develop an effective algorithm for an accurate and stable reconstruction of the NF data needed by the NF–FF transformation from the acquired irregularly spaced ones. A viable and convenient strategy [5] is to retrieve the uniform samples from the nonuniform ones and then reconstruct the required NF data via an accurate and stable OSI expansion. In this framework, two different approaches have been proposed. The former is based on an iterative technique, which converges only if there is a biunique correspondence associating at each uniform sampling point the nearest nonuniform one, and has been applied in [5] to the uniform samples reconstruction in the case of cylindrical and spherical surfaces. The latter relies on the singular value decomposition method, does not exhibit the above limitation, but can be conveniently applied only if the uniform samples recovery can be reduced to the solution of two independent one-dimensional problems [6]. Both the approaches have been applied and numerically compared with reference to the positioning errors compensation in the spherical NF–FF transformation for long antennas [7] using a prolate ellipsoidal AUT modelling. The goal of this work is just to validate experimentally the application of these approaches to the NF–FF transformation with spherical scanning for elongated antennas [4], using a cylinder ended in two half-spheres for modelling them. The experimental tests have been performed in the Antenna Characterization Lab of the University of Salerno, provided with a roll over azimuth spherical NF facility supplied by MI Technologies, and have fully assessed the effectiveness of both the approaches.  [1] J.E. Hansen, ed., Spherical Near-Field Antenna Measurements , IEE Electromagnetic Waves Series, London, UK, Peter Peregrinus, 1998. [2] O.M. Bucci, C. Gennarelli, C. Savarese, “Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples,” IEEE Trans. Antennas Prop. , vol. 46, pp. 351-359, 1998. [3] O.M. Bucci, F. D’Agostino, C. Gennarelli, G. Riccio, C. Savarese, “Data reduction in the NF–FF transformation technique with spherical scanning,” Jour. Electr. Waves Appl ., vol. 15, pp. 755-775, June 2001. [4] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, M. Migliozzi, “Effective antenna modellings for NFFF transformations with spherical scanning using the minimum number of data,” Int. Jour. Antennas Prop ., vol. 2011, Article ID 936781, 11 pages, 2011 [5] O.M. Bucci, C. Gennarelli, G. Riccio, C. Savarese, “Electromagnetic fields interpolation from nonuniform samples over spherical and cylindrical surfaces,” IEE Proc. Microw. Antennas Prop ., vol. 141, pp. 77-84, April 1994. [6] F. Ferrara, C. Gennarelli, G. Riccio, C. Savarese, “Far field reconstruction from nonuniform plane-polar data: a SVD based approach,” Electromagnetics,  vol. 23, pp. 417-429, July 2003 [7] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, M. Migliozzi, “Two techniques for compensating the probe positioning errors in the spherical NF–FF transformation for elongated antennas,” The Open Electr. Electron. Eng. Jour. , vol. 5, pp. 29-36, 2011.

Equiangular Phase Shifting Holography for THz Near-field/Far-field Prediction
Gary Junkin,Josep Parrón Granados, Pedro de Paco Sánchez, Yi Lu, November 2014

A three-step equiangular (120º) phase shifting holography (EPSH) technique is proposed for THz antenna near-field/far-field prediction. The method is attractive from the viewpoint of receiver sensitivity, phase accuracy over the entire complex plane, simplified detector array architecture, as well as reducing planarity requirements of the near-field scanner. Numerical modeling is presented for the holographic receiver performance, using expected phase shift calibrations errors and phase shift noise. The receiver model incorporates responsivity and thermal noise specifications of a commercial Schottky diode detector. Additionally, simulated near-field patterns at 372GHz demonstrate the convenience of the method for accurate and high dynamic range THz near-field/far-field predictions, using a phase-shifter calibrated to ±0.1°.

Far-Field Reconstruction from Near-Field Data Collected through a Planar Spiral Scan: Experimental Evidences
Francesco D'Agostino,Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi, November 2014

In the recent years, many efforts have been spent to reduce the time required for the near-field data acquisition, since such a time is nowadays very much greater than that required to perform the transformation. In this context, planar spiral scanning techniques exploiting continuous and synchronized movements of the positioning systems of the probe and antenna under test (AUT) have been proposed [1-4] to significantly reduce the measurement time. They are based on the nonredundant sampling representations of electromagnetic fields [5, 6] and use optimal sampling interpolation formulas to efficiently recover the data required by the classical plane-rectangular near-field – farfield (NF–FF) transformation [7] from those acquired along the spiral. In particular, the AUT has been modelled as enclosed in a sphere in [1, 2], whereas an oblate ellipsoid has been considered in [3, 4]. When dealing with a quasi-planar AUT, this last antenna modelling results to be more effective from the truncation error and data reduction viewpoints with respect to the spherical one. As a matter of fact, it is able to reduce the redundancy induced by the spherical modelling for such a kind of antennas and allows to consider measurement planes at distances less than one half of the antenna maximum size, thus lowering the error related to the truncation of the scanning surface. The goal of this work is to experimentally validate the NF–FF transformation with planar spiral scanning which makes use of the ellipsoidal AUT modelling [3]. The experimental tests will be performed in the Antenna Characterization Lab of the University of Salerno, equipped with a planepolar NF facility system, besides the cylindrical and spherical ones, and will fully assess the effectiveness of this technique, as well as, of that based on the spherical modelling, that can be obtained as particular case from the oblate one when the ellipsoid eccentricity goes to zero.  [1] O.M. Bucci, F. D’Agostino, C. Gennarelli, G. Riccio, and C. Savarese, “Probe compensated far-field reconstruction by near-field planar spiral scanning,” IEE Proc. – Microw., Antennas and Propagat. , vol. 149, pp. 119–123, 2002. [2] F. D’Agostino, C. Gennarelli, G. Riccio, and C. Savarese, “Theoretical foundations of near-field–far-field transformations with spiral scannings,” Prog. in Electromagn. Res. , vol. 61, pp. 193-214, 2006 [3] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “An effective NF-FF transformation technique with planar spiral scanning tailored for quasi-planar antennas,” IEEE Trans. Antennas Propagat ., vol. 56, pp. 2981-2987, 2008. [4] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “The unified theory of near–field – far–field transformations with spiral scannings for nonspherical antennas,” Prog. in Electromagn. Res. B,  vol. 14, pp. 449-477, 2009. [5] O.M. Bucci, C. Gennarelli, and C. Savarese, “Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples,” IEEE Trans. Antennas Prop. , vol. 46, pp. 351- 359, 1998. [6] O.M. Bucci and C. Gennarelli, “Application of nonredundant sampling representations of electromagnetic fields to NF-FF transformation techniques,” Int. Jour. of Antennas and Propagat. , vol. 2012, ID 319856, 14 pages. [7] D. T. Paris, W. M. Leach, Jr., and E. B. Joy, “Basic theory of probe-compensated near-field measurements,” IEEE Trans. Antennas Propagat.,  vol. AP-26, pp. 373-379, May 1978.

Achieving High Accuracy from a Near-field Scanner without Perfect Positioning
George Cheng,Yong Zhu, Jan Grzesik, November 2014

We propose a technique which achieves highly accurate near-field data as well as far-field patterns despite the positioning inaccuracy of the scanner in the antenna near-field measurements. The method involves position sensing hardware in conjunction with data processing software. The underlying theory is provided by the Field Mapping Algorithm (FMA), which transforms exactly the measured field data on a conventional planar, spherical, or cylindrical surface, indeed on any enclosing surface, to any other surface of interest.  In our modified near-field scanning system, a position recording laser device is attached to the probe. The positions of data grid points are thus found and recorded along with the raw RF data.  The raw data acquired over an irregular, imperfect surface is subsequently converted exactly to a designated, regular surface of canonical type based on the FMA and its associated position information.  Once the near-field data is determined at all required grid points, the far-field pattern per se is obtained via a conventional near-field-to-far-field transformation.  Moreover, and perhaps just as importantly, the interplay between our FMA and the free-form position/RF recording methodology just described allows us to bypass entirely the arduous task of strict antenna alignment.  The free-form position/RF data are simply propagated by the FMA software to some perfectly aligned reference surface ideally adapted as a springboard for any intended far-field buildup. Our proposed marriage of a standard scanning system and a position recorder, with otherwise imperfect RF/location data restored to ideal status under the guidance of the FMA, clearly offers the advantage of high precision at minimal equipment cost.  It is, simply stated, a win-win budget/accuracy RF measurement solution. Two analytic examples and one measurement case are given for demonstration.  The first example is a circular aperture within an infinite conducting plane, the second is a 10 lambda x 10 lambda dipole array antenna.  The measurement case involves a waveguide slot array antenna.  In all three cases, the near-field data were deliberately acquired over imperfectly located grid points. The FMA was then applied to obtain near-field data at the preferred, regularly arranged grid points from these position compromised values.  Excellent grid-to-grid near-field comparison and calculated far-field results were obtained.

Near-Field to Far-Field Transformation for ICs Using Dipole-Moment Models on EMI Measurement
Guochang Shi,Yuan Zhang, Yi Liao, November 2014

The electromagnetic compatibility (EMC) problems are becoming more challenging and noticeable due to the increasing complexity of integrated circuits (IC). Currently, most electromagnetic interference (EMI) standards specify that the measurements must be performed in the far field which is time consuming and expensive for the use of semi-anechoic chambers or open area test site. While near-field measurement is usually fast and much more flexible, especially for the complex structures, the near-field results could be obtained more efficiently for built-in ICs. The transformation between near-field and far-field data is of great significance as long as the near-field data is measured. Many methods including near-field scanning method and Huygens’ equivalence method are used to complete the transformation from near-field data to far-field radiation. However, the near-field scanning method is inherent complex and requires strict mathematical derivation, which is difficult to handle for some practical cases. Huygens’ equivalence method is restricted by the location of observation point and the results are hardly obtained under scanning plane. In contrast, near-field to far-field transformation based on inverse method appears to be more desirable by reconstructing a dipole-moment model instead of an IC. The dipole-moment model can be used to predict the far-field data, but also can be incorporated into a numerical full-wave tool as an equivalent source for complex systems. In this paper, the inverse method is firstly introduced. A noise source model from an IC is proposed based on an array of dipoles. These dipole moments can be extracted from the near-field measurement in a scanning plane above the IC. Each dipole is modeled as an equivalent combined source consists of wire antennas and loop antennas. Then the radiation of IC in far-field region can be easily obtained. Finally, an example of physical IC is given to validate the approach.

Near-Field to Far-Field Transformation for ICs Using Dipole-Moment Models on EMI Measurement
Guochang Shi,Yuan Zhang, Yi Liao, November 2014

The electromagnetic compatibility (EMC) problems are becoming more challenging and noticeable due to the increasing complexity of integrated circuits (IC). Currently, most electromagnetic interference (EMI) standards specify that the measurements must be performed in the far field which is time consuming and expensive for the use of semi-anechoic chambers or open area test site. While near-field measurement is usually fast and much more flexible, especially for the complex structures, the near-field results could be obtained more efficiently for built-in ICs. The transformation between near-field and far-field data is of great significance as long as the near-field data is measured. Many methods including near-field scanning method and Huygens’ equivalence method are used to complete the transformation from near-field data to far-field radiation. However, the near-field scanning method is inherent complex and requires strict mathematical derivation, which is difficult to handle for some practical cases. Huygens’ equivalence method is restricted by the location of observation point and the results are hardly obtained under scanning plane. In contrast, near-field to far-field transformation based on inverse method appears to be more desirable by reconstructing a dipole-moment model instead of an IC. The dipole-moment model can be used to predict the far-field data, but also can be incorporated into a numerical full-wave tool as an equivalent source for complex systems. In this paper, the inverse method is firstly introduced. A noise source model from an IC is proposed based on an array of dipoles. These dipole moments can be extracted from the near-field measurement in a scanning plane above the IC. Each dipole is modeled as an equivalent combined source consists of wire antennas and loop antennas. Then the radiation of IC in far-field region can be easily obtained. Finally, an example of physical IC is given to validate the approach.

Application of Huygens' Principle to a Dual Frequency Constant Beamwidth Reflector Operating in the Focused Near-Field
Herbert Aumann,Nuri Emanetoglu, November 2014

A technique is presented for determining the pattern of an antenna in the focused near-field from cylindrical near-field measurements. Although the same objective could be achieved by conventional near-field to far-field transformation followed by a back projection, the proposed technique has an intuitive appeal and is considerably simpler and faster. The focused near-field antenna pattern is obtained by applying Huygens’ principle, as embodied in the field equivalent principle, directly to near-field measurements and by including an “obliquity factor” to suppress backlobe radiation.  The technique was experimentally verified by comparison with far-field patterns obtained by conventional cylindrical near-field to far-field transformation and by EM simulations. Excellent agreement in sidelobe levels and beamwidth was achieved.  The technique was applied to the 25 in diameter reflector antenna of a harmonic radar operating at 5.8 GHz and 11.6 GHz. Since the operating range of this radar is less than 40 ft, the reflector is the near-field at both frequencies. By defocusing the reflector at the harmonic frequency the beamwidths and gains at both frequencies can be made the same. The defocusing is accomplished by exploiting the frequency dependent phase center displacement of a log-periodic feed.

Beamforming Filtering for Planar Near-Field Antenna Measurements
Kazeem Yinusa,Raimund Mauermayer, Thomas Eibert, November 2014

It is well known that a field probe acts as a filter for the measured antenna under test (AUT) fields, whose influence can be either described in spatial or in spectral domain. Directive probes, for instance, serve to filter out signals that originate far away from the boresight axis. However, there are several drawbacks to the use of such directive probes including the possibility of multiple reflections and probe nulls. This contribution discusses the application of beamforming techniques to suppress unwanted echo signals in planar near-field antenna measurements. The AUT is measured with a small probe antenna such as is normally used for such measurements. Neighboring measurement signals are thereafter combined in a moving average manner in order to generate the signal as would be measured by a probe array. Successive filter lengths, such as 3x3, 5x5, etc., are utilized such that the valid angle is preserved without extending the measurement plane. The generated near-field signals are then transformed using a flexible plane wave based near-field far-field transformation algorithm. Probe correction does not reverse the reduction in multipath signals achieved by the use of a directive probe or beamforming since sources are assumed only within the minimum sphere enclosing the AUT. Results are presented for simulated data with substantially improved results of the far-field pattern of the AUT.

Dual Polarized Near Field Probe Based on OMJ in Waveguide Technology Achieving More Than Octave Bandwidth
Lars Jacob Foged,Andrea Giacomini, Roberto Morbidini, Vincenzo Schirosi, Sergey Pivnenko, November 2014

In classical probe-corrected spherical near-field measurements, one source of measurement errors, not often given sufficient consideration is the probe [1-3]. Standard near-field to far-field (NFFF) transformation software applies probe correction with the assumption that the probe pattern behaves with a µ=±1 azimuthal dependence. In reality, any physically-realizable probe is just an approximation to this ideal case. Probe excitation errors, finite manufacturing tolerances, and probe interaction with the mounting interface and absorbers are examples of errors that can lead to presence of higher-order spherical modes in the probe pattern [4-5]. This in turn leads to errors in the measurements. Although probe correction techniques for higher-order probes are feasible [6], they are highly demanding in terms of implementation complexity as well as in terms of calibration and post-processing time. Thus, probes with high azimuthal mode purity are generally preferred.   Dual polarized probes for modern high-accuracy measurement systems have strict requirements in terms of pattern shape, polarization purity, return loss and port-to-port isolation. As a desired feature of modern probes the useable bandwidth should exceed that of the antenna under test so that probe mounting and alignment is performed only once during a measurement campaign. Consequently, the probe design is a trade-off between performance requirements and usable bandwidth. High performance, dual polarized probe rely on balanced feeding in the orthomode junction (OMJ) to achieve good performance on a wide, more than octave, bandwidth [5-7]. Excitation errors of the balanced feeding must be minimized to reduce the excitation of higher order spherical modes. Balanced feeding on a wide bandwidth has been mainly realized with external feeding network and the finite accuracy of the external components constitutes the upper limits on the achievable performance.     In this paper, a new OMJ designed entirely in waveguide and capable of covering more than an octave bandwidth will be presented. The excitation purity of the balanced feeding is limited only by the manufacturing accuracy of the waveguide. The paper presents the waveguide based OMJ concept including probe design covering the bandwidth from 18-40GHz using a single and dual apertures. The experimental validation is completed with measurements on the dual aperture probe in the DTU-ESA Spherical Near-Field facility in Denmark.       References: [1]Standard Test Procedures for Antennas, IEEE Std.149-1979 [2]Recommended Practice for Near-Field Antenna Measurements, IEEE 1720-2012 [3]J. E. Hansen (ed.), Spherical Near-Field Antenna Measurements, Peter Peregrinus Ltd., on behalf of IEE, London, UK, 1988 [4]L. J. Foged, A. Giacomini, R. Morbidini, J. Estrada, S. Pivnenko, “Design and experimental verification of Ka-band Near Field probe based on wideband OMJ with minimum higher order spherical mode content”, 34th Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2012, Seattle, Washington, USA [5]L. J. Foged, A. Giacomini, R. Morbidini, “Probe performance limitation due to excitation errors in external beam forming network”, 33rd Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2011, Englewood, Colorado, USA [6]T. Laitinen, S. Pivnenko, J. M. Nielsen, and O. Breinbjerg, “Theory and practice of the FFT/matrix inversion technique for probe-corrected spherical near- eld antenna measurements with high-order probes,” IEEE Trans. Antennas Propag., vol. 58, no. 8, pp. 2623–2631, Aug. 2010. [7]L. J. Foged, A. Giacomini, R. Morbidini, "Wideband dual polarised open-ended waveguide probe", AMTA 2010 Symposium, October, Atlanta, Georgia, USA. [8]L. J. Foged, A. Giacomini, R. Morbidini, “ “Wideband Field Probes for Advanced Measurement Applications”, IEEE COMCAS 2011, 3rd International Conference on Microwaves, Communications, Antennas and Electronic Systems, Tel-Aviv, Israel, November 7-9, 2011.

Combining Pattern, Polarization and Channel Balance Correction Routines to Improve the Performance of Broad Band, Dual Polarized Probes
Patrick Pelland,Allen Newell, November 2014

Broad band, dual polarized probes are becoming increasingly popular options for use in near-field antenna measurements. These probes allow one to reduce cost and setup time by replacing several narrowband probes like open-ended waveguides (OEWG) with a single device covering multiple waveguide bands. These probes are also ideal for production environments, where chamber throughput should be maximized. Unfortunately, these broadband probes have some disadvantages that must be quantified and corrected for in order to make them viable for high accuracy near-field measurements. Most of these broadband probes do not have low cross polarization levels across their full operating bandwidths and may also have undesirable artifacts in the main component of their patterns at some frequencies. Both of these factors will result in measurement errors when used as probes. Furthermore, the use of a dual port RF switch adds an additional level of uncertainty in the form of port-to-port channel balance errors that must be accounted for. This paper will describe procedures to calibrate the pattern and polarization properties of broad band, dual polarized probes with an emphasis on a newly developed polarization correction algorithm. A simple procedure to measure and correct for amplitude and phase imbalance entering the two ports of the near-field probe will also be presented. Measured results of the three calibration procedures (pattern, polarization, channel balance) will be presented for a dual-polarized, broad band quad-ridged horn antenna. Once calibrated, this probe was used to measure a standard gain horn (SGH) and will be compared to baseline measurements acquired using a good polarization standard open-ended waveguide (OEWG). Results with and without the various calibration algorithms will illustrate the advantage to using all three routines to yield high accuracy far-field pattern data.

Indoor RCS measurement facilities ARCHE 3D: Influence of the target supporting mast in RCS measurement
Pierre Massaloux, November 2014

Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern. In order to perform more complete characterizations, a spherical experimental layout has been developed at CEA for indoor Near Field monostatic RCS assessment. This experimental layout is composed of a 4 meters radius motorized rotating arch (horizontal axis) holding the measurement antennas while the target is located on a mast (polystyrene or Plexiglas) mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allows full 3D near field monostatic RCS characterization. This paper investigates the influence of the material of the mast supporting the target under test. Across several measurement steps, we compare different RCS measurement results of canonical targets in order to eliminate the unwanted RCS measurement contribution due to the mast. The aim is to find out the mast which disturbs the least the RCS of the target under test but still compatible with the measurement facility ARCHE 3D. All these measurements are also compared to Near Field and Far Field calculations taking into account the material of the supporting mast.

Field Synthesis Using Multilevel Plane Wave Based Field Transformation
Raimund Mauermayer,Thomas Eibert, November 2014

The synthesis of a specific field distribution in a certain volume with a given set of sources is an issue which arises in acoustics as well as in electromagnetics. Field Synthesis is of increasing interest for over the air (OTA) testing of multiple input multiple output (MIMO) based communication devices as arbitrary multipath communication channels can be simulated synthesizing the corresponding field distribution around the device under test (DUT). Plane-wave Field Synthesis methods have already been applied to improve the quality and extents of the quiet zone region of compact antenna test ranges (CATR). Furthermore, by synthesizing a plane wave field in a test region for an antenna under test (AUT), using an array of probe antennas in its near-field region, near-field far-field transformations (NFFFT) can be performed. Since there exists a variety of important applications for electromagnetic Field Synthesis, a Field Synthesis approach with high flexibility and low computational complexity is presented in this contribution. Usually, depending on the application, a single moving probe antenna or an array of probe antennas is used to synthesize a desired field distribution in the test zone volume where the DUT will be placed. The challenge is to determine appropriate excitation signals for the individual probe antennas. For that purpose an equation system is iteratively solved which arises from the boundary condition for the tangential field components on the surface of the test volume. As a consequence of the uniqueness theorem, equality of the desired and synthesized tangential field components induces that the desired and synthesized field distribution are identical in the source free test volume. Field testing on the surface of the test volume is performed by vector testing functions defined on a triangular mesh of the test zone surface enabling field synthesis in arbitrarily shaped test volumes. For accelerated evaluation of the coupling between probe antennas and vector testing functions, principles of the fast multipole method (FMM) are adopted. The implied plane wave expansions enables to incorporate the radiation characteristic of the probe antenna sources just by directly employing its plane wave spectrum representation which is nothing else but its far-field pattern. Additionally, the multilevel approach minimizes the number of translation operations between source and receiver boxes organized in a hierarchical oct-tree. Altogether the approach is applicable to arbitrarily shaped test volumes and arbitrarily arranged probe antennas and still shows a linearithmic complexity. In this contribution, detailed insight in the Field Synthesis method is given. Results for synthesized field distributions for arbitrarily shaped test volumes are presented. Finally the application of plane-wave Field Synthesis to NFFFT is shown for synthetic as well as for real near-field antenna measurement data.







help@amta.org
2026 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31