AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Far Field

Group Delay Measurement For Satellite Payload Testing
Daniel Janse Van Rensburg, Allen Newell, Stuart Gregson, Pat Pelland, October 2017

Equivalent Isotropically Radiated Power (EIRP), Saturating Flux Density (SFD) and Group Delay (GD) are three system level parameters often measured during the characterization of spacecraft systems. EIRP is of interest for transmitters, SFD for receivers and GD for the entire up/down link. A test methodology for EIRP and SFD was first presented in [1] and [2] and a detailed procedure presented in [3]. To date GD has only been measured under far-field (or simulated far-field) conditions. In [4], a concept for measuring GD in a planar near-field (PNF) range is described, but no methodology is presented. In this paper, we present a method for measuring GD in a planar near-field range. The technique is based on a set of three antenna pairs, measured sequentially, from which the insertion phase of the measurement system and the near-field probe [5] can be resolved. Once these parameters are known, insertion phase for the device under test (i.e. a Tx or Rx antenna) can be measured and GD calculated as the negative frequency derivative of the insertion phase. An added complexity in the case of a near-field measurement is the near-field probe is in close proximity to the device under test (not far-field condition) for which compensation is needed. We show through simulation and measurement, that the plane wave expansion allows us to compute a correction factor for the proximity of the probe to the device under test; thus allowing correction of the measured insertion phase. The final step in measuring payload GD through both uplink and downlink channels is to set up a fixed Tx probe in close proximity to the Rx antenna and an equivalent Rx probe in close proximity to the Tx antenna and performing a through measurement as one would do on a far-field range. Correction factors for compensating for the proximity of both probes are then applied, based on independent a-priori Rx and Tx case measurements performed on the antennas. Simulated and measured data will be presented to demonstrate the process and to illuminate some of the finer nuances of the correction being applied. Index Terms— Group Delay, Planar Near-Field, Antenna Measurements, Three Antenna Method. [1] A. C. Newell, R. D. Ward and E. J. McFarlane, “Gain and power parameter measurements using planar near-field techniques”, IEEE Trans. Antennas &Propagat, Vol 36, No. 6, June 1988 [2] A. C. Newell, “Planar near-field antenna measurements”, NIST EM Fields Division Report, Boulder, CO, March 1994. [3] D. Janse van Rensburg and K. Haner, “EIRP & SFD Measurement methodology for planar near-field antenna ranges”, Antenna Measurement Techniques Association Conference, October 2014. [4] C. H. Schmidt, J. Migl, A. Geise and H. Steiner, “Comparison of payload applications in near field and compact range facilities”, Antenna Measurement Techniques Association Conference, October 2015. [5] A. Frandsen, D. W. Hess, S. Pivnenko and O. Breinbjerg, “An augmented three-antenna probe calibration technique for measuring probe insertion phase”, Antenna Measurement Techniques Association Conference, October 2003.

Measurements of Low Gain VHF Antennas in Spherical Multi-Probe NF Systems
Andrea Giacomini, Francesco Saccardi, Vincenzo Schirosi, Francesca Rossi, Stephane Dooghe, Arnaud Gandois, Lars Foged, October 2017

Measurement of the radiation properties of low gain antenna operating at VHF frequencies is well known to be a challenging task. Such antennas are sometimes tested in outdoor Far Field (FF) ranges which are unfortunately subject to errors caused by the electromagnetic pollution and scattering from the environment. Near Field (NF) measurements performed in shielded anechoic chambers are thus preferable to outdoor ranges. However, also in such cases, the accuracy of the results may be compromised by the poor reflectivity of the absorbing material which might be not large enough wrt the VHF wavelength. Other source of errors may be caused by the truncation of the scanning area which generates ripple on the FF pattern after NF/FF transformation. Spherical multi-probe systems developed by MVG are optimal measurement solution for low directive Device Under Test (DUT). Such systems allow to perform a quasi-full spherical acquisition combining a rotation of the DUT along azimuth, with a fast electronically scanned multi-probe vertical arch. The DUT can be accommodated on masts made of polyester material which allows to minimize the interaction with the DUT. Measurements of low directive device above 400 MHz performed with such type of systems have been demonstrated to be accurate and extremely fast in previous publications. In this paper, measurements of a low directivity antenna, performed at VHF frequencies in a MVG spherical multi-probe system, will be presented. The antenna in this study is an array element, part of a larger array, which has been developed for space-born AIS applications. Gain and pattern accuracy of the measurement will be demonstrated by comparison with full wave simulation of the tested antenna.

Measurement of Antenna System Noise Temperature Using Planar Near-Field Data
Allen Newell, Patrick Pelland, Stuart Gregson, Daniël Janse van Rensburg, October 2017

This paper presents the results of a new measurement technique to determine antenna system noise temperature using data acquired from a planar near-field measurement. The ratio of antenna gain to system noise temperature (G/T) is usually determined in a single measurement when the antenna is alternately pointed towards the “cold sky” and a hot radio source such as the sun or a star with a known flux density. The antenna gain is routinely determined from near-field measurements and with the development of this new technique, the system noise temperature can also be determined. The ratio of G/T can therefore be determined from planar near-field data without moving the antenna to an outdoor range. The noise temperature is obtained by using the plane-wave spectrum of the planar near-field data and focusing on the portion of the spectrum in the evanescent or “imaginary space” portion of the spectrum. Near-field data is obtained using a data point spacing of l/4 or smaller and the plane-wave spectrum is calculated without applying any probe correction or Cos(q) factor. The spectrum is calculated over real space corresponding to propagating modes of the far-field pattern and also the evanescent or imaginary space region where . Actual evanescent modes are highly attenuated in the latter region and therefore the spectrum in this region must be produced by “errors” in the measured data. Some error sources such as multiple reflections will produce distinct localized lobes in the evanescent region and these are recognized and correctly identified by using a data point spacing of less than l/2 to avoid aliasing errors in the far-field pattern. It has been observed that the plane wave spectrum beyond these localized lobes becomes random with a uniform average power. This region of the spectrum must be produced by random noise in the near-field data that is produced by all sources of thermal noise in the electronics and radiated noise sources received by the antenna. By analysing and calibrating this portion of the spectrum in the evanescent region the near-field noise power can be deduced and the corresponding noise temperature determined. Simulated and measured data will be presented to illustrate and validate the measurement and analysis techniques. Keywords — Planar Near-Field, G/T, Figure-of-Merit Measurements, Simulation, Plane Wave Spectrum.

Acquisition, Reconstruction, and Transformation of a Spiral Near-Field Scan
Brett Walkenhorst, Scott McBride, October 2017

The topic of non-redundant near-field sampling has received much attention in recent literature. However, a practical implementation has so far been elusive. This paper describes a first step toward such a practical implementation, where the practicality and generality are maximized at the expense of more acquired data points. Building on the theoretical work of faculty at the University of Salerno and University of Naples, the authors have acquired a set of near-field data using a spiral locus of sample points and, from those data, obtained the far-field patterns. In this paper, we discuss the acquisition system, the calculation and practical implementation of the spiral, the phase transformations, interpolations, and far-field transforms. We also present the resultant far-field patterns and compare them to patterns of the same antenna using conventional near-field scanning. Qualitative results involving aperture back-projection are also given. We summarize our findings with a discussion of error, uncertainty, acquisition time, and processing time in this simplified approach to non-redundant sampling in a practical system.

A Novel and Innovative Near Field System for Testing Radomes of Commercial Aircrafts
Marc Le Goff, Nicolas Adnet, Nicolas Gross, Luc Duchesne, Arnaud Gandois, Ludovic Durand, October 2017

The maintenance of aircraft radomes is of particular importance for the commercial aviation industry due to the necessity to ensure the correct functioning of the radar antenna, housed within such protective enclosures. Given that the radar component provides weather assessment, as well as guidance and navigation functions (turbulence avoidance, efficiency of route planning in case of storms, etc.), it is imperative that every repaired radome be tested with accuracy and reliability to ensure that the enclosed weather radar continues to operate in accordance with the after-repair test requirements of the RTCA/DO-213. Recently, this quality standard was updated and published under the name RTCA/DO-213A, establishing more stringent measurement requirements and incorporating the possibility of measuring radomes using Near-Field systems. Consequently, a compliant multi-probe Near- Field system concept – AeroLab – has been specifically designed to measure commercial aircraft nose-radomes, in order to meet the new standard requirements. AeroLab performs Near-Field measurements. Near-Field to Far-Field transformations are then applied to the results. Such a Near-Field system allows the test range to be more compact than traditional Far-field test ranges, and thus be independent from the updated Far-Field distance which has progressed from D²/2l to 2D²/l in the new standard RTCA/DO-213A. AeroLab enables the evaluation of the transmission efficiency and beamwidth. It also allows for accurate evaluations of the side-lobe levels by providing improved visualization of principal cut views selected from 3D patterns. Moreover, depending upon the weather radar system inside the radome under test, 2 distinct scan sequences must now be taken into account: “elevation over azimuth” and “azimuth over elevation”. AeroLab emulates both of these motion sequences through a monolithic gimbal. Furthermore, thanks to its multi-probe array, such measurements are performed in a fraction of the time spent in current mono-probe test facilities (less than 4 hours, i.e. 1/3 less time than single probe scanners). Keywords: RTCA/DO-213A, radome measurement system, after-repair tests, multi-probe measurement system, Near-Field system.

Multi-Band Compact MIMO Antenna System for LTE and WLAN Communications
Jiukun Che, Chi-Chih Chen, October 2017

In this paper, a novel compact 2-channel MIMO antenna design for all cellular and Wi-Fi communication needs from vehicular is discussed. The entire antenna system fits within the 13cm (diameter) by 9cm (height) volume. It consists of 2 vertical multi-band cellular antenna elements and two vertical multi-band Wi-Fi antenna elements. All four antennas share a 13cm diameter circular ground plane. Each antenna element design is a PCB based slot-loaded multi-band monopole. This particular element design as well as their mounting positions were chosen to minimize mutual coupling and blockage in order to maximize MIMO performance, i.e. diversity gain. In addition, the center region of the antenna volume also accommodates a raised L1-band GPS antenna. A prototype antenna was subsequently fabricated. The measured antenna performance compared well with simulated results before and after being mounted on a 4 feet diameter ground plane. The effect of the radome was also assessed and was found to be insignificant. The cellular antenna produced realized gain of over 2 dBi in lower cellular band (0.7 GHz to 1 GHz), and over 5dBi in the higher cellular band (1.7-2.1GHz and 2.3GHz-2.5GHz). The Wi-Fi antenna produced realized gain of over 5dBi in both 2.4 GHz and 5.8 GHz bands. The far-field pattern correlation coefficient was also calculated to evaluate the diversity gain performance of antenna system. For the cellular band, the correlation number is lower than 0.55 for 0.7 to 1 GHz, and lower than 0.35 for all the other band. For the entire Wi-Fi band, the correlation number is lower than 0.4.

Near-Field Far-Field Transformation for Circular Aperture Antennas using Circular Prolate Wave Functions
Amedeo Capozzoli, Claudio Curcio, Angelo Liseno, October 2017

In the last years different advances in Near-Field (NF) measurements have been proposed. Among the others, the ones of interest here are: the determination of the number and spatial distribution of sampling points, the introduction of scanning strategies aimed to reduce the measurement time, the adoption of a proper representation, for the unknowns of interest, able to improve the reliability of the characterization [1]. In particular, the use of Prolate Spheroidal Wave Functions (PSWFs) for the expansion of the aperture field has proven effective to take into account for the quasi-band-limitedness of both the aperture field and the Plane Wave Spectrum. Furthermore, using a proper expansion is an important step of the Singular Value Optimization (SVO) approach, wherein the number of the spatial distribution of the NF samples are determined as the ones reducing the ill-conditioning of the problem [1]. Up to now, rectangular PSWFs has been successfully exploited to perform optimized NF characterizations of rectangular aperture antennas. Recently, we tackled the extension to the case of circular apertures. The difficulties related to the stability and accuracy of the numerical evaluation of the Circular PSWFs have been assessed in [2], showing the benefits due to the use of a proper expansion, with respect to standard backpropagation. Furthermore, the circular PSWFs expansion correctly takes into account for the spectral radiating support, with respect suboptimal representation of the rectangular case. The aim of the paper is to show how the circular PSWFs expansion can be fruitfully exploited in the NF characterization of circular aperture antennas. Experimental results will be presented to support the performance of the method. [1] A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno, “Singular value optimization in plane-polar near-field antenna characterization”, IEEE Antennas Prop. Mag., vol. 52, n. 2, 103-112, Apr. 2010. [2] A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno, “Prolate Function Expansion of Circularly Supported Aperture Fields in Near-Field Antenna Characterization”, European Conference on Antennas and Propagation 2017, Paris 19-24 March 2017.

Broadband Additive Spiral Antenna
Tommy Lam, October 2017

As part of the Lockheed Martin (LM) Additive Manufacturing (AM) Initiative, the Rotary Mission System antenna group has been developing a new and improved Additive Spiral Antenna (ASA) for both transmit and receive applications. This is a collaboration effort between LM engineering and LM manufacturing for a low cost and high performance antenna for manyultra-wide band(UWB) applications in both military and commercial market sectors. Unlike other conventional spiral designs, thisrecently emerging Additive Manufacturing capabilities allow extra spiral antenna miniaturizations without additional gain bandwidth performance penalties. This is achieved by leveraging unique low cost AM abilities to form complex and thus much more efficient 3D shapes to increase spiral antenna radiation efficiency, approaching the Chu’s gain bandwidth limitation. An initial prototype ASA was designed and tested in 2016 and showed very encouraging results. The measured ASA performance indicated nearly the same antenna performance as our current conventional production spiral antenna having multi-decade frequency band performance. More importantly, the ASA aperture size was significantly reduced by more than 50% with excellent transmit and receive gain efficiency and power handling capabilities. This paper will describe this ASA prototype design approaches and antenna near field and far field compact range measurement results along with material characterizations to demonstrate Additive Manufacturing technology can enhance antenna performance that otherwise not realizable with conventional fabrications. In addition, an integrated optimum balun length electromagnetic band gap (EBG) cavity design further reduces the antenna depth by over 70% will be presented. This is realized by use of high power and high temperature honeycomb absorbers in conjunction to electromagnetic band gap (EBG) cavity design for achieving high efficiency and low cavity profile, with total antenna volume reduction by nearly 3x. Some discussions will be provided for solving high thermal issues associated with ASA’s transmit capabilities.

Determination of the Far Field Radiation Pattern of an Antenna from a Set of Sparse Near Field Measurements
Scott Kordella, Kenneth Grimm, November 2016

This work introduces a new technique in electromagnetic antenna near-field to far-field transformation (NF/FF). The NF/FF transformation is based on the solution of an inverse problem in which the measured NF and predicted FF values are attributed to a set of equivalent electric and magnetic surface currents which lie on a convex arbitrary surface that is conformal to the antenna under test (AUT). The NF points are conformal to the AUT, reducing the number of samples and relaxing positioning requirements used in conventional spherical, cylindrical and planar NF/FF geometries. A pseudo inversion of the matrix representing the mapping of the equivalent sources into the near-field samples is obtained by using the singular value decomposition (SVD). The SVD is used to form an approximation of the inverse of the matrix. This inverse, when multiplied by the NF measurement vector, solves for the efficiently radiating components of the current, and not the essentially non-radiating components of current which are not visible in the measurements. The inversion technique used is robust in the presence of measurement noise and provides a stable solution for the unknown currents. The FF is computed from the currents in a straightforward manner. The work develops the theoretical foundation for the approach and investigates the FF reconstruction accuracy of the technique for a test case. Approved for Public Release; Distribution Unlimited. Case Number 16-0884 The author's affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to convey or imply MITRE's concurrence with, or support for, the positions, opinions or viewpoints expressed by the author.

Determination of the Far Field Radiation Pattern of an Antenna from a Set of Sparse Near Field Measurements
Scott Kordella, Kenneth Grimm, November 2016

This work introduces a new technique in electromagnetic antenna near-field to far-field transformation (NF/FF). The NF/FF transformation is based on the solution of an inverse problem in which the measured NF and predicted FF values are attributed to a set of equivalent electric and magnetic surface currents which lie on a convex arbitrary surface that is conformal to the antenna under test (AUT). The NF points are conformal to the AUT, reducing the number of samples and relaxing positioning requirements used in conventional spherical, cylindrical and planar NF/FF geometries. A pseudo inversion of the matrix representing the mapping of the equivalent sources into the near-field samples is obtained by using the singular value decomposition (SVD). The SVD is used to form an approximation of the inverse of the matrix. This inverse, when multiplied by the NF measurement vector, solves for the efficiently radiating components of the current, and not the essentially non-radiating components of current which are not visible in the measurements. The inversion technique used is robust in the presence of measurement noise and provides a stable solution for the unknown currents. The FF is computed from the currents in a straightforward manner. The work develops the theoretical foundation for the approach and investigates the FF reconstruction accuracy of the technique for a test case. Approved for Public Release; Distribution Unlimited. Case Number 16-0884 The author's affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to convey or imply MITRE's concurrence with, or support for, the positions, opinions or viewpoints expressed by the author.

Spherical Field Transformation for Hemispherical Antenna Measurements above Perfectly Conducting Ground Planes
Raimund Mauermayer, Thomas Eibert, November 2016

The spherical multipole based near-field far-field transformation is extended to near-field antenna measurements above a perfectly electrically conducting (PEC) ground plane. As the effect of the ground plane is considered in the transformation by applying the image principle to the spherical modes radiated by the device under test (DUT), the near-field measurement points above the ground plane are sufficient to fully characterize the radiation behavior of the DUT above PEC ground. The nonequispaced fast Fourier transform (NFFT) is employed in the forward operator of the inverse problem in order to apply the transformation to e.g. spiral scans which are favorable to large and heavy scanner systems. If the elevation axis is located above or below the ground plane, an additional translation operator is integrated into the transformation to consider such an offset in the mechanical system. The proposed method is applied to synthetic and simulated automotive antenna near-field data in order to show its effectiveness.

Far Field Uncertainty due to Noise and Receiver Nonlinearity in Planar-Near Field Measurements
Serge Balma, Dominique Picard, Pascal Meisse, November 2016

The uncertainty of the far field, obtained from antenna planar near field measurements, against the dynamic range is investigated by means of statistical analysis. The dynamic range is usually limited by the noise floor for low level signals and by the receiver saturation for high level signals. The noise level could be important for high measurement rate, which requires the usage of a high signal level to ensure a sufficient signal to noise ratio. As a result the nonlinearities are increasing, thus a compromise must be accomplished. To evaluate the effects of the limited near field dynamic range on the far field, numerical simulations are performed for dipoles array. Initially, the synthetic near field data corresponding to a given antenna under test were generated and directly processed to yield the corresponding far field patterns. Many far field parameters such as gain, beam width, maximum sidelobe level, etc. are determined and recorded as the error-free values of these parameters. Afterwards, the synthetic near field data are deliberately corrupted by noise and receiver nonlinearities while varying the amplitude through small, medium and large values. The error-corrupted near field data are processed to yield the far field patterns, and the error-corrupted values of the far field parameters are calculated. Finally, a statistical analysis was conducted by means of comparison between the error-corrupted parameters and the error-free parameters to provide a quantitative evaluation of the effects of near field errors on the different far field parameters.

Gain antenna measurement using single cut near field measurements
Manuel Sierra Castañer, Francesco Saccardi, Lars Foged, November 2016

There are some antennas where rapid validation is required, maintaining a reduced measurement space and sufficient accuracy in the calculation of some antenna parameters as gain. In particular, for cellular base station antennas in production phase the measurement time is a limitation, and a rapid check of the radiation performance becomes very useful. Also, active phased arrays require a high measurement time for characterizing all the possible measurement conditions, and special antenna measurement systems are required for their characterization. This paper presents a single or dual cut near field antenna test procedure for the measurement of the gain of antennas, especially for separable array antennas. The test set-up is based on an azimuth positioner and a near to far field transformation software based on the expansion of the measurements in cylindrical modes. The paper shows results for gain measurements: first near to far field transformation is performed using the cylindrical modes expansion assuming a zero-height cylinder. This allows the use of a FFT in the calculation of the far field pattern including probe correction. In the case of gain, a near to far field transformation factor is calculated for theta = 0 degrees, using the properties of separable arrays. This factor is used in the gain calculation by comparison technique. Depending on the antenna shape one or two main cuts are required for the calculation of the antenna gain: for linear arrays it is enough to use the vertical cut (larger dimension of the antenna), for planar array antenna 2 cuts are necessary, unless the array was squared assuming equal performance in both planes. Also, this method can be extrapolated to other kind of antennas: the paper will check the capabilities and limitations of the proposed method. The paper is structured in this way: section 1 presents the measurement system. Section 2 presents the algorithms for near to far field transformation and gain calculation. Section 3 presents the validation of the algorithm. Section 4 presents the results of the measurement of different antennas (horns, base station arrays, reflectors) to analyze the limitations of the algorithm.  Section 5 includes the conclusions.

Nonredundant NF-FF Transformation with Spherical Scan Accounting for an Offset Mounting of a Long AUT
Francesco D'Agostino, Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi, November 2016

Among the near-field–far-field (NF–FF) transformations, that adopting the spherical scanning is particularly interesting, since it allows the complete antenna pattern reconstruction and avoids the error due to the scanning zone truncation. The classical spherical NF–FF transformation [1] has been modified in [2] by exploiting the spatial quasi-bandlimitation properties of the electromagnetic (EM) fields [3]. In particular, the choice of the highest spherical wave has been rigorously determined by these properties instead to be fixed by a rule-of-thumb related to the minimum sphere enclosing the antenna under test (AUT). The nonredundant sampling representations of the EM fields [4] have been properly applied to develop effective NF–FF transformations, requiring a number of NF data remarkably lower than that needed by the classical transformation [1] when considering nonvolumetric antennas. In particular, a quasi-planar AUT has been modelled by an oblate ellipsoid [2] or by a double bowl [5], whereas a long AUT has been shaped by a prolate ellipsoid [2] or by a cylinder with two hemispherical caps (rounded cylinder) [5]. Unfortunately, for practical constraints, it is not always possible to mount the AUT in such a way that it is centred on the scanning sphere centre. In such a case, the number of NF data needed by the classical NF–FF transformation [1] and the related measurement time can considerably grow, due to the corresponding increase of the minimum sphere radius. To overcome this drawback, a new spherical NF–FF transformation has been recently proposed in [6], by developing a properly modified version of the spherical wave expansion, wherein the spherical wave functions are defined with respect to the AUT centre instead of the scanning sphere one. Although the number of needed NF data is drastically reduced with respect to that fixed by the rule of the minimum sphere radius, it results to be slightly greater than the one corresponding to a centred mounting. Aim of this work is to properly exploit the nonredundant representations of EM fields to develop a nonredundant spherical NF–FF transformation for long antennas, based on rounded cylinder modelling, which requires the same number of NF data in both cases of centred and offset mounting of the AUT. It will be so possible to remarkably reduce the number of NF data and the related measurement time with respect to that required by the approach [6]. [1] J. Hald, J.E. Hansen, F. Jensen, and F.H. Larsen, Spherical near-field antenna measurements, J.E. Hansen, (ed.), London, Peter Peregrinus, 1998. [2] O.M. Bucci, C. Gennarelli, G. Riccio, and C. Savarese, “Data reduction in the NF–FF transformation technique with spherical scanning,” Jour. Electromagn. Waves Appl., vol. 15, pp. 755-775, June 2001. [3] O.M. Bucci and G. Franceschetti, “On the spatial bandwidth of scattered fields,” IEEE Trans. Antennas Prop., vol. AP-35, pp. 1445-1455, Dec. 1987. [4] O.M. Bucci, C. Gennarelli, and C. Savarese, “Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples,” IEEE Trans. Antennas Prop., vol. 46, pp. 351-359, 1998. [5] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “Effective antenna modellings for NF–FF transformations with spherical scanning using the minimum number of data,” Int. Jour. Antennas Prop., vol. 2011, ID 936781, 11 pages. [6] L.J. Foged, P.O. Iversen, F. Mioc, and F. Saccardi, “Spherical near field offset measurements using downsampled acquisition and advanced NF/FF transformation algorithm,” Proc. of EUCAP 2016, paper 1570229473, Davos, Apr. 2016.

Efficient Diagnosis of Radiotelescopes Misalignments
Amedeo Capozzoli, Angelo Liseno, Claudio Curcio, Salvatore Savarese, Pietro Schipani, November 2016

An innovative method for the diagnosis of large reflector antennas from far field data in radio astronomical application is presented, which is based on the optimization of the number and the location of the far field sampling points required to retrieve the antenna status in terms of feed misalignments. In these applications a continuous monitoring of the Antenna Under Test (AUT), and its subsequent reassessment, is necessary to guarantee the optimal performances of the radiotelescope. The goal of the method is to reduce the measurement time length to minimize the effects of the time variations of both the measurement setup and of the environmental conditions, as well as the issues raised by the complex tracking of the source determined by a prolonged acquisition process. Furthermore, a short measurement process helps to shorten the idle time forced by the maintenance activity. The field radiated by the AUT is described by the aperture field method. The effects of the feed misalignments are modeled in terms of an aberration function, and the relationship between this function and the Far Field Pattern is recast in the linear map by expanding on a proper set of basis functions the perturbation function of the Aperture Field. These basis functions are determined using the Principal Component Analysis. Accordingly, from the Far Field Pattern, assumed measured in amplitude and phase, the unknown parameters defining the antenna status can be retrieved. The number and the position of the samples is then found by a Singular Values Optimization (SVO).

Insights Into Spherical Near Field Probe Correction Gained From Examining the Probe Response Constants
Jason Jerauld, November 2016

Several recent articles [1-9] have focused on assessing spherical near field (SNF) errors induced by using a non-ideal probe, i.e. a probe that has  modal content. This paper explores this issue from the perspective of the probe response constants, defined by [10], which are the mathematical representation of the effect of the antenna under test (AUT) subtending a finite angular portion of the probe pattern at measurement distance . The probe response constants are a function of the probe modal coefficients, the size of the AUT (i.e. the AUT minimum sphere radius ), and the measurement distance , and thus can be used to evaluate the relative contribution of probe  content as both measurement distance and AUT size varies. After a brief introduction, the first section of this paper reviews the theory describing the probe response constants; the second section provides some examples of the probe response constants for a simulated broadband quad-ridge horn, and the final section examines measured AUT pattern errors induced by using the corresponding probe response constants in a conventional SNF-to-FF transform.   References:   [1] A. C. Newell and S. F. Gregson, “Effect of Higher Order Modes in Standard Spherical Near-Field Probe Correction,” in AMTA 2015 Proceedings, Long Beach, CA, 2015.   [2] Y. Weitsch, T. F. Eibert, and L. G. T. van de Coevering, “Investigation of Higher Order Probe Corrected Near-Field Far-Field Transformation Algorithms for Preceise Measurement Results in Small Anechoic Chambers, in AMTA 2015 Proceedings, Long Beach, CA, 2015.   [3] A. C. Newell and S. F. Gregson, “Estimating the Effect of Higher Order Azimuthal Modes in Spherical Near-Field Probe Correction,” in EuCAP 2014 Proceedings, The Hague, 2014.   [4] A. C Newell and S. F. Gregson, “Higher Order Mode Probes in Spherical Near-Field Measurements, in EuCAP 2013 Proceedings, Gothenburg, 2013.   [5] A. C. Newell and S. F. Gregson, “Estimating the Effect of Higher-Order Modes in Spherical Near-Field Probe Correction,” in AMTA 2012 Proceedings, Seattle, WA, 2012.   [6] T. A. Laitinen and S. Pivnenko, “On the Truncation of the Azimuthal Mode Spectrum of High-Order Probes in Probe-Corrected Spherical Near-Field Antenna Measurements,” in AMTA 2011 Proceedings, Denver, CO, 2011.   [7] T. A. Laitinen, S. Pivnenko, and O. Breinbjerg, “Theory and Practice of the FFT/Matrix Inversion Technique for Probe-Corrected Spherical Near-field Antenna Measurements with High-Order Probes,” IEEE Trans. Antennas and Prop., Vol. 58, No. 8, August 2010.   [8] T. A. Laitinen, J. M. Nielsen, S. Pivnenko, and O. Breinbjerg, On the Application Range of General High-Order Probe Correction Technique in Spherical Near-Field Antenna Measurements,” in EuCAP 2007 Proceedings, Edinburgh, 2007.   [9] T. A Laitinen, S. Pivnenko, and O. Breinbjerg, “Odd-Order Probe Correction Technique for Spherical Near-Field Antenna Measurements,” Radio Sci., Vol. 40, No. 5, 2005.   [10] J. E. Hansen ed., Spherical Near-Field Antenna Measurements, London: Peregrinus, 1988.

Improving the Cross-Polar Discrimination of Compact Antenna Test Range using the CXR Feed
Andrea Giacomini, Lars Foged, Antonio Riccardi, Jörg Pamp, Rasmus Cornelius, Dirk Heberling, November 2016

Compact Antenna Test Range (CATR) provide convenient testing, directly in far-field conditions of antenna systems placed in the Quiet Zone (QZ). Polarization performance is often the reason that a more expensive, complex, compensated dual reflector CATR is chosen rather than a single reflector CATR. For this reason, minimizing the QZ cross-polarization of a single reflector CATR has been a challenge for the industry for many years. A new, dual polarised feed, based on conjugate matching of the undesired cross polar field in the QZ on a full wave-guide band, has recently been developed, manufactured and tested. The CXR feed (cross polar reduction feed) has shown to significantly improve the QZ cross-polar discrimination of standard single reflector CATR systems. In previous papers, the CXR feed concept has been discussed and proved using a limited scope demonstrator and numerical analysis. In this paper, for the first time, the exhaustive testing of the dual polarised feed operating in the extended WR-75 waveguide band (10-16 GHz) is presented. Accuracy improvements, achieved in antenna cross-polar testing, using this feed is also illustrated by measured examples.

Source reconstruction by far-field data for imaging of defects in frequency selective radomes
Bjorn Widenberg, Kristin Persson, Mats Gustafsson, Gerhard Kristensson, November 2016

An inverse source reconstruction method with great potential in radome diagnostics is presented. Radomes are designed to enclose antennas to protect them, from e.g. weather conditions. Frequency selective surface (FSS) radomes are designed to conceal the antennas and provide stealth properties, by transmitting specific frequencies and be reflective for other frequencies. Ideally, the radome is expected to be electrically transparent. However, tradeoffs are necessary to fulfill properties such as aerodynamics, robustness, lightweight, weather persistency, stealth properties, etc. One tradeoff is the existence of inevitable defects. Specifically, for examples, seams in large radomes, lightning strike protection, Pitot tubes, rain caps, or lattice dislocations in frequency selective radomes. In all these examples of defects, it is essential to diagnose their influences, since they degrade the electromagnetic performance of the radomes if not carefully attended and analyzed. In this contribution, we investigate if source reconstruction can be employed to localize and image the disturbances from the defects on the surface of the radome. Employing far-field measurements remove the need for probe compensation. An artificial puck plate (APP) radome with dislocations in the lattice is investigated. An APP radome is a frequency selective surface (FSS) and it consists of a thick perforated conducting frame, where the apertures in the periodic lattice are filled with dielectric pucks. Due to the double curvature of an FSS surface, gaps and disturbances in the lattice may cause deterioration of the radome performance. Source reconstruction methods determine the equivalent surface currents close to the object of interest. The reconstructions are established by employing an integral representation in combination with an integral equation. The geometry of the object on which the fields are reconstructed is arbitrary. However, the problem is ill-posed and needs regularization. The equivalent surface currents are reconstructed on a body of revolution with the method of moment (MoM), and the problem is regularized with a singular value decomposition (SVD). The aim is to back-propagate a measured far field to determine the field components on the radome surface. The purpose is to investigate if defects on a frequency selective surface (FSS) lattice can be localized.

Source reconstruction by far-field data for imaging of defects in frequency selective radomes
Bjorn Widenberg, Kristin Persson, Mats Gustafsson, Gerhard Kristensson, November 2016

An inverse source reconstruction method with great potential in radome diagnostics is presented. Radomes are designed to enclose antennas to protect them, from e.g. weather conditions. Frequency selective surface (FSS) radomes are designed to conceal the antennas and provide stealth properties, by transmitting specific frequencies and be reflective for other frequencies. Ideally, the radome is expected to be electrically transparent. However, tradeoffs are necessary to fulfill properties such as aerodynamics, robustness, lightweight, weather persistency, stealth properties, etc. One tradeoff is the existence of inevitable defects. Specifically, for examples, seams in large radomes, lightning strike protection, Pitot tubes, rain caps, or lattice dislocations in frequency selective radomes. In all these examples of defects, it is essential to diagnose their influences, since they degrade the electromagnetic performance of the radomes if not carefully attended and analyzed. In this contribution, we investigate if source reconstruction can be employed to localize and image the disturbances from the defects on the surface of the radome. Employing far-field measurements remove the need for probe compensation. An artificial puck plate (APP) radome with dislocations in the lattice is investigated. An APP radome is a frequency selective surface (FSS) and it consists of a thick perforated conducting frame, where the apertures in the periodic lattice are filled with dielectric pucks. Due to the double curvature of an FSS surface, gaps and disturbances in the lattice may cause deterioration of the radome performance. Source reconstruction methods determine the equivalent surface currents close to the object of interest. The reconstructions are established by employing an integral representation in combination with an integral equation. The geometry of the object on which the fields are reconstructed is arbitrary. However, the problem is ill-posed and needs regularization. The equivalent surface currents are reconstructed on a body of revolution with the method of moment (MoM), and the problem is regularized with a singular value decomposition (SVD). The aim is to back-propagate a measured far field to determine the field components on the radome surface. The purpose is to investigate if defects on a frequency selective surface (FSS) lattice can be localized.

Phaseless Near-Field Antenna Measurement Techniques – An Overview
Olav Breinbjerg, Javier Fernández Álvarez, November 2016

For near-field antenna measurement it is sometimes desirable or necessary to measure only the magnitude of the near-field - to perform so-called phaseless (or amplitude-only or magnitude-only) near-field antenna measurements [1]. It is desirable when the phase measurements are unreliable due to probe positioning inaccuracy or measurement equipment inaccuracy, and it is necessary when the phase reference of the source is not available or the measurement equipment cannot provide phase. In particular, as the frequency increases near-field phase measurements become increasingly inaccurate or even impossible. However, for the near-field to far-field transformation it is necessary to obtain the missing phase information in some other way than through direct measurement; this process is generally referred to as the phase retrieval. The combined process of first measuring the magnitudes of the field and subsequently retrieving the phase is referred to as a phaseless near-field antenna measurement technique. Phaseless near-field antenna measurements have been the subject of significant research interest for many years and numerous reports are found in the literature. Today, there is still no single generally accepted and valid phaseless measurement technique, but several different techniques have been suggested and tested to different extents. These can be divided into three categories: Category 1 – Four magnitudes techniques, Category 2 – Indirect holography techniques, and Category 3 -Two scans techniques. This paper provides an overview of the different phaseless near-field antenna measurement techniques and their respective advantages and disadvantages for different near-field measurement setups. In particular, it will address new aspects such as probe correction and determination of cross-polarization in phaseless near-field antenna measurements. [1] OM. Bucci et al. “Far-field pattern determination by amplitude only near-field measurements”, Proceedings of the 11’th ESTEC Workshop on Antenna Measurements, Gothenburg, Sweden, June 1988.







help@amta.org
2026 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31