AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Far Field

Spherical near-field antenna measurements with the Scientific-Atlanta Model 2022
Joseph J. Tavormina (Scientific-Atlanta, Inc.),D.W. Hess (Scientific-Atlanta, Inc.), November 1980

Near-field antenna measurement techniques offer an alternative to conventional far-field antenna measurement techniques. Of the various coordinate systems used for near-field measurements, the spherical coordinate system provides the most natural extension from the conventional far-field characterization of an antenna to a more general characterization for arbitrary range lengths. This paper describes the Scientific-Atlanta Model 2022, a user-oriented implementation of a spherical near-field antenna measurement system. An example of typical system usage is provided. System capabilities and performance are described. Key concepts required to understand and use the spherical near-field method are discussed. The advantages and disadvantages of near-field antenna testing in relation to conventional far-field testing are considered. The particular merits of spherical near-field testing as compared to other forms of near-field testing are discussed. Antenna testing situations which provide the most likely candidates for the spherical near-field measurement technique are described.

Near-field measurement techniques and equipment at the NAEC facility
R.L. Staples (Naval Air Engineering Center),J.L. Kunert (Naval Air Engineering Center), November 1980

The Naval Air Engineering Center has been assigned the task of developing Near Field Measurement Techniques and Equipment for testing Navy Aircraft-mounted antennas. These efforts will be applied to Nose-mounted and Wing-mounted antennas. The ultimate objective is the development of a portable near-field test system for the Navy’s ‘O’ level. The test system will produce far field pattern predictions of installed airborne antennas by measuring and processing near field data. NAEC would, also, like the test system to determine if an installed antenna is mission capable or degraded; and in the event of a failed antenna, the test system will isolate the fault of that antenna. This paper will describe NAEC’s progress in this task by descriptions of the following: I. Electrical Hardware i.e. transmitter, receiver, interfaces, controllers II. Mechanical Hardware i.e. translator, probe carriage III. Mathematical approaches Also, recent laboratory results will be described.

Evaluation of a compact range for millimeter wave antenna measurements
J.H. Pape (Scientific-Atlanta Inc.), November 1980

The compact antenna range has been recognized as an effective means of testing microwave antennas. Antennas which normally require long outdoor ranges for testing can be tested under far field conditions at an indoor facility, using the compact range. The compact range operates on the principal that a parabolic reflector will transform an incident spherical wave into a collimated plane wave in its near zone. The plane wave produced is suitable for testing antennas, thus simulating far field electromagnetic criteria in the near zone. The typical compact range is housed in a room approximately 20 feet wide, 40 feet long and 20 feet high. The performance of the compact range has been well documented and specified over a frequency range of 3.95 GHz to 18.0 GHz. Now, through recent testing performed at Scientific-Atlanta, the compact range can be specified for operation up through 60.0 GHz. This paper describes the tests that were performed, discussed the results of these tests and establishes performance specifications for operation at these millimeter frequency bands.

An Automated Precision Microwave Vector Ratio Measurement Receiver Offers Solutions for Sophisticated Antenna Measurement Problems
F.K. Weinert, November 1980

This paper describes a new, automated, microprocessor controlled, dual-channel microwave vector ratio measurement receiver for the frequency range 10 MHz to 18 GHz. It provides a greater than 120 dB dynamic range and resolutions of 0.001 dB and 0.1 degree. Primarily designed as an attenuator and Signal Generator Calibrator, it offers solutions to antenna measurement problems where high accuracies and/or wide dynamic measurement ranges are required such as for broadband cross-polarization measurements on radar tracking antennas, highly accurate gain measurements on low-loss reflector antennas, frequency domain characteristics measurements on wide-band antennas with resulting data suitable for on-line computer conversion to time domain transient response and dispersion characteristics data and wideband near field scanning measurements for computing far field performances. The measurement data in the instrument is obtained in digital form and available over an IEEE-488 bus interface to an outside computer. Measurement times are automatically optimized by the built-in microprocessor with respect to signal/noise ratio errors in response to the measurement signal level and the chosen resolution. Complete digital measurement data amplitude of both channels and phase, is updated every 5 milliseconds.

Antenna pattern interpolation via digital signal reconstruction
J.J. Tavormina (Scientific-Atlanta, Inc.), November 1980

Digital signal processing techniques provide a method by which a finely resolved antenna pattern can be reconstructed from coarsly sampled data. Antenna pattern reconstruction offers several advantages over the direct measurement of a finely resolved pattern, and is applicable whenever a computer is available for implementation of the reconstruction algorithm. As computerized pattern measurement equipment becomes more prevalent, pattern reconstruction algorithms will become more common place. The advantages of pattern reconstruction include higher quality presentation of antenna patterns due to increased resolution, decreased data acquisition time due to coarser sampling, and decreased data storage requirements. The mean square error or a reconstructed antenna pattern is smaller than that of the directly measured pattern. In the context of near-field to far-field pattern transformations, pattern reconstruction becomes essential. The transformation is performed at a coarse spacing for maximum computational speed without compromising the quality of output data. This paper provides an introduction to the technique of antenna pattern reconstruction. Key concepts and terminology are discussed A generic reconstruction algorithm is developed. Examples of interpolated antenna patterns are shown.

Antenna Polarization measurements
R. Heaton, November 1979

In recent years there has been an increasing requirement for more extensive and precise measurements of the polarization properties of antennas. Some of the more conventional polarization measurement techniques are no longer applicable because of the required measurement time or the achievable accuracy. This presentation is an overview of polarization measurement methods which may be employed on far-field antenna ranges. Instrumentation requirements and sources of error are also included.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30