AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Far Field

Measurement receiver error analysis for rapidly varying input signals
O.M. Caldwell (Scientific-Atlanta Inc.), November 1991

An assessment of instrumentation error sources and their respective contributions to overall accuracy is essential for optimizing an electromagnetic field measurement system. This study quantifies the effects of measurement receiver signal processing and the relationship to its transient response when performing measurements on rapidly varying input signals. These signals can be encountered from electronically steered phased arrays, from switched front end receive RF multiplexers, from rapid mechanical scanning, or from dual polarization switched source antennas. Numerical error models are presented with examples of accuracy degradation versus input signal dynamics and the type of receiver IF processing system that is used. Simulations of far field data show the effects on amplitude patterns for differing rate of change input conditions. Criteria are suggested which can establish a figure of merit for receivers measuring input signals with large time rates of change.

Calibration of large antenna measured in small quiet zone area
D-C. Chang (Chung Shan Institute of Science and Technology),M.R. Ho (Chung Shan Institute of Science and Technology), November 1991

Compact range systems have been widely used for antenna measurements. However, the amplitude taper can lead to significant measurement errors especially as the dimension of antenna is larger than quiet zone area. An amplitude taper removing technique by software implement is presented for compact range system. A 12 feet by 1.0 feet S-band rectangular slot array antenna is measured in SA5751 compact range system, which provides a quiet zone area with a 4 feet diameter. Results of corrected far-field patterns from compact range are compared with that taken by planar near-field range.

The Application of a small compact range to the testing of millimeter antennas
J.D. Huff (Scientific-Atlanta, Inc.),D.W. Hess (Scientific-Atlanta, Inc.), November 1991

Since the first commercial compact range was introduced by Scientific-Atlanta in 1973, the compact range has become a very popular alternative to far-field ranges. In recent years larger and larger compact ranges have been built, increasing the size of antennas that may be tested and lowering the operating frequency. However little has been done in the other direction, to increase the operational frequency and to decrease the size of the compact range. This paper reports on the design and fabrication of a small compact range having a 1 foot test zone and operating at 95 GHz.

Quiet zone scan of the single-plane collimating range
C.R. Birtcher (Arizona State University),C.A. Balanis (Arizona State University), V.J. Vokurka (Eindhoven University), November 1991

The prototype of the March Microwave Single-Plane Collimating Range (SPCR) has been in operation at Arizona State University’s ElectroMagnetic Anechoic Chamber (EMAC) facility for approximately three years. The unique SPCR produces a cylindrical-wave test region by bouncing spherical wavefronts off a parabolic cylindrical reflector. Consequently, a simplified algorithm can be applied to determine antenna far-field patterns. Both computation and acquisition times can be reduced considerably when compared to classical NF/FF cylindrical scanning techniques. To date, this is the only SPCR in operation. Some of the fundamental quantities which characterize an antenna/RCS measurement range are the size and quality of the “quiet zone”, usually expressed in terms of ripple and taper of the illuminating fields relative to an ideal planar wavefront. Direct one-way probing of the quiet zone fields in the vertical and horizontal planes has been recently completed at ASU. An overview of the range geometry, the field probing methodology, and the data processing will be presented. The results of the quiet zone scan will be presented as amplitude ripple, amplitude taper, and phase ripple versus frequency from 4 GHz to 18 GHz in four bands. The vertical-scan phase deviations are relative to an ideal planar wavefront, while those of the horizontal scan are relative to an ideal cylindrical wavefront.

Near-field measurement experience at Scientific-Atlanta
D.W. Hess (Scientific-Atlanta, Inc.), November 1991

The experience with near-field scanning at Scientific-Atlanta began with a system based upon a analog computer for computing the two-dimensional Fourier transform of the main polarization component. When coupled with a phase/amplitude receiver and a modest planar near-field scanner this system could produce far-field patterns from near-field scanning measurements. In the 1970’s it came to be recognized that the same advances, which made the more sophisticated probe-corrected planar near field measurements possible, would enable conventional far-field range hardware to be used on near-field ranges employing spherical coordinates. In 1980 Scientific-Atlanta first introduced a spherical near-field scanning system based upon a minicomputer already used to automate data acquisition and display. In 1990, to meet the need of measuring complex multistate phased-array antennas, Scientific Atlanta began planning a system to support the high volume data requirement and high speed measurement need represented by this challenge. Today Scientific-Atlanta is again pursuing planar near-field scanning as the method of choice for this test problem.

Probe correction coefficients derived from near-field measurements
G. Masters (Nearfield Systems Incorporated), November 1991

Probe correction is necessary in near-field measurements to compensate for non-ideal probes. Probe compensation requires that the probe’s far-field pattern be known. In many cases direct far-field measurements are undesirable, wither because they require dismantling the probe from te near-field range set-up or because a far-field range is not available. This paper presents a unique methos of deriving probe-correction coefficients by measuring a probe on a near-field range with an “identical” probe and taking the square root of the transformed far field. This technique, known as the “robe-square-root” method can be thought of as self-compensation. Far-field comparisons are given to show that this technique is accurate.

Probe correction coefficients derived from near-field measurements
G. Masters (Nearfield Systems Incorporated), November 1991

Probe correction is necessary in near-field measurements to compensate for non-ideal probes. Probe compensation requires that the probe’s far-field pattern be known. In many cases direct far-field measurements are undesirable, wither because they require dismantling the probe from te near-field range set-up or because a far-field range is not available. This paper presents a unique methos of deriving probe-correction coefficients by measuring a probe on a near-field range with an “identical” probe and taking the square root of the transformed far field. This technique, known as the “robe-square-root” method can be thought of as self-compensation. Far-field comparisons are given to show that this technique is accurate.

General analytic correction of probe-position errors in spherical near-field measurments
L.A. Muth (National Institute of Standards and Technology), November 1991

A recently developed analytic technique that can correct for probe position errors in planar near-field measurements to arbitrary accuracy [1] is shown to be also applicable to spherical near-field data after appropriate modifications. The method has been used to successfully remove errors in the near-field, hence leading to more accurate far-field patterns, even if the maximum error in the probe’s position is as large as 0.2?. Only the error-contaminated near-field measurements and an accurate probe position error function are needed to be able to implement the correction technique. It is assumed that the probe position error function is a characteristic of the near-field range, and that it has been obtained using state-of-the-art laser positioning and precision optical systems. The method also requires the ability to obtain derivatives of the error contaminated near-field defined on an error-free regular grid with respect to the coordinates. In planar geometry the derivatives are obtained using FFTs [1], and, in spherical geometry, one needs to compute derivatives of Hankel functions for radical errors, and derivatives of the spherical electric and magnetic vector basis functions for errors in the ? and Ø coordinates. The error-correction technique has been shown to work well for errors in and of the spherical coordinates r, ? or Ø. Efficient computer codes have been developed to demonstrate the technique using computer simulations.

Measurement system performance considerations for planar near field scanning applications
J.H. Pape (Scientific-Atlanta, Inc.),O.M. Caldwell (Scientific-Atlanta, Inc.), November 1991

This paper describes measurement system performance parameters that were considered during the design phase of a planar near-field measurement range for Spar Aerospace Limited. All aspects of the planar near-field measurement system are addressed. These include; instrument selection, scanner interface hardware, system controller/computer hardware, software for data collection, near-field to far-field transformation, data analysis, networking and system configuration. The Scientific-Atlanta Model 2095 Microwave Measurement System with its near-field options is used as the basis for meeting the Spar requirement. The various data collection parameters of the Model 2095 are described with special emphasis on how the factors relate to near-field requirements such as fixed grid sampling. Examples of typical test scenarios are presented as an aid in exploring detailed data collection system timing.

A New bi-polar near-field measurement facility: design analysis and development
Y. Rahmat-Samii (University of California Los Angeles),L.I. Williams (University of California Los Angeles), November 1991

A novel bi-polar planar near-field measurement range is described. This range is mechanically simple and has a reduced implementation cost compared to other planar techniques. The particular physical implementation and comparison with the plane-polar range is presented. Development aspects of the customized bi-polar range at UCLA are summarized. An optimal near-field interpolation is used to enable the near-field to far-field (NF-FF) processing via fast Fourier transform (FFT). Computer simulated near-field and far-field results are given.

Antenna far-field from near-field modulus: a phase retrieval strategy
Y.D. Cheung (The University of Sheffield),A.P. Anderson (The University of Sheffield), G. Junkin (The University of Sheffield), November 1991

Far-field pattern prediction of a mm wave reflector antenna from a scan of the near-field modulus is reported. The phase retrieval algorithm utilises minimisation and the generalized error reduction algorithm to retrieve both aperture amplitude and phase from a single planar intensity scan. The far-field pattern is calculated from the retrieved complex aperture. Experimental results from measurement of a 1.12m diameter reflector at 32 GHz are presented to illustrate the practicality of the algorithm for millimeter and submillimeter applications.

Hybrid near-field/far-field antenna measurement techniques
K.W. Lam (March Microwave Systems B.V.),V.J. Vokurka (University of Technology), November 1991

In this paper, an antenna measurement technique based on modified cylindrical NF/FF transformation will be presented. In conventional cylindrical near-field scanning techniques, the near fields are probed on a cylindrical surface surrounding the test antenna. This required extensive data acquisition and processing time which can be reduced substantially if the antenna under test is illuminated by a cylindrical wave. In this hybrid approach, cylindrical wave illumination is generated using a single parabolic reflector in combination with a (point) source. The far-field pattern is then computed by a powerful one-dimensional NF/FF algorithm. It is concluded that this alternative approach combines the attributes of the compact-range technique and the classical NF/FF transformation.

Payload testing in a compact range
R. Torres (ESA-ESTEC),J. Reddy (ESA-ESTEC), P. Bengtsson (ESA-ESTEC), November 1991

The Concept of Compact Test Range has been recently much used for antenna testing facilities, its main characteristic of having far-field conditions in a small and closed place, for a very large frequency band, makes it very attractive. Antenna manufacturers are building them up when the millimetric waves and the spacecraft flight model antennas become part of their activities. The change of the point of view of the antenna characteristics – now, parameters like Gain and Radiation Patterns are replaced by EIRP, Flux Density or Coverage- modifies the classical test philosophy. It makes different the Test Procedures which, in addition, have to take into account the cleanliness and the quality control required for handling flight models, as well. The Compact Payload Test Range (CPTR) in ESTEC shows up a PWZ of 7 x 5 x 5 metres for a frequency range from 1.5 to 40 GHz.; it has been created for testing whole Spacecraft Payloads in space required cleanliness area. The particular properties of the CPTR as such as shielded room, feed scanning, multiaxis test positioner, etc. are used to improve its test possibilities.

Spherical probing demonstrated on a far-field range
R.E. Wilson (Georgia Institute of Technology),D.N. Black (Georgia Institute of Technology), E.B. Joy (Georgia Institute of Technology), G. Edar (Georgia Institute of Technology), M.G. Guler (Georgia Institute of Technology), November 1991

The spherical probing technique for the angular location of secondary scatterers in antenna measurement ranges is demonstrated for an anechoic chamber far-field range. Techniques currently used for source location use measurements of the range field on a line or plane. A linear motion unit and possible a polarization rotator are necessary to measure the range field in this manner. The spherical range probing technique uses measurements of the range field over a spherical surface enclosing the test zone allowing existing range positioners to be used for the range field measurement. The spherical probing technique is demonstrated on an anechoic chamber far-field range with a known secondary reflection source. The plane wave spectrum of the measured range field is computed and used for source angular location. Source locations in the range correspond to the angular locations of amplitude peaks in the spectrum. The effects of the range field probe on this spherical probing is investigated by performing probe compensation.

Arc range test facility
P.R. Franchi (Rome Laboratory),H. Tobin (Rome Laboratory), November 1991

Problems exist with the measurement of large aperture antennas due to the far field requirement. This paper discussed a new method to measure a phased array at about 1/10 the normal far field. The basic idea involves focusing the test array at probe antenna a distance R away from the aperture. In the described measurement technique the probe antenna is placed on an arm that rotates 100º on the focal arc given by Rcos(?). This arc minimizes defocusing due to phase aberrations. To minimize the amplitude errors, the pattern of the probe antenna is carefully matched in order to compensate for the 1/R variation induced amplitude error. The application of this technique will enable arrays to be measured in anechoic chambers, allowing convenient classified testing, while avoiding the effects of weather, and will reduce the risks inherent in the high power testing on transmit. The results of a computer simulation is presented that characterizes the validity and limitations of the technique.

Application of beam space techniques to phased array calibration and fault compensation
H.M. Aumann (Massachusetts Institute of Technology),F.G. Willwerth (Massachusetts Institute of Technology), November 1991

Beamspace techniques are usually employed to synthesize phased array antenna patterns of arbitrary shape. In this paper a beamspace method is used to calibrate the pattern of a 32-element linear array with a conventional array taper. By measuring the antenna pattern in specific directions the beamspace technique permits the actually applied excitation function to be determined with little mathematical effort. Iterative corrections can then be made to the excitation function to maintain low sidelobe performance, or to compensate for element failures. Since local corrections to the array pattern result in global changes to the excitation function, explicit knowledge of where an element failure has occurred is not required. The beamspace analysis was carried out using antenna patterns obtained by electronically scanning the array past a far-field source. Such pattern measurements offer the possibility of maintaining phased array performance in an operational environment.

Plane wave analysis and evaluation of an indoor far field conductive chamber
W.S. Arceneaux (Martin Marietta Company),C. Christodoulou (University of Central Florida), November 1991

Martin Marietta designed and brought on-line an indoor far-field chamber used for radar cross section (RCS) evaluation. The range has conductive walls on all sides except for the pyramidal absorber covered back wall. The chamber was designed such that wall/floor/ceiling interactions occur with a distance (time) delay allowing for their isolation from the test region. Software gating techniques are used to remove these unwanted signals. This paper presents an analysis of the conductive chamber using Geometrical Optics (GO). The objective was to analyze and evaluate the plane wave quality in the chamber test region. The evaluation of the plane wave was performed using the angle transform technique. The measured results were compared to analytical results and measured antenna patterns.

Plane wave analysis and evaluation of an indoor far field conductive chamber
W.S. Arceneaux (Martin Marietta Company),C. Christodoulou (University of Central Florida), November 1991

Martin Marietta designed and brought on-line an indoor far-field chamber used for radar cross section (RCS) evaluation. The range has conductive walls on all sides except for the pyramidal absorber covered back wall. The chamber was designed such that wall/floor/ceiling interactions occur with a distance (time) delay allowing for their isolation from the test region. Software gating techniques are used to remove these unwanted signals. This paper presents an analysis of the conductive chamber using Geometrical Optics (GO). The objective was to analyze and evaluate the plane wave quality in the chamber test region. The evaluation of the plane wave was performed using the angle transform technique. The measured results were compared to analytical results and measured antenna patterns.

Measurements and modeling of a focused scalar horn-lens antenna
D. Blejer (MIT Lincoln Laboratory), November 1990

The properties of a focused scalar horn-lens antenna are presented. The behavior of the field from the lens to the far field is determined from electromagnetic principles and measured antenna patterns at the focal distance are shown.

An HP-8510-based 45-GHz instrumentation radar for ISAR image and glint studies
R. Dinger (Naval Weapons Center),D.J. Banks (Naval Weapons Center), D.R. Gagnon (Naval Weapons Center), E. Van Bronkhorst (Naval Weapons Center), November 1990

A 45 GHz instrumentation radar system unique in several respects has been developed for inverse synthetic aperture radar (ISAR) and tracking angle scintillation (glint) studies. The system, based on a Hewlett-Packard HP-8510B network analyzer, is fully polarimetric and operates on a 1000-m outdoor far-field range. An amplitude monopulse receiver provides a measure of the instantaneous apparent-center-of-scattering of the target. Successful glint and ISAR measurements have been made on targets as large as 8 m.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30