AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Far Field

Estimation of the size, location, and power-density of the 'bright spot' in a compact antenna range
P.N. Richardson (Texas Instruments Incorporated), November 1985

When performing far-field testing on large-aperture antennas, the range length 2D2/? (that is needed to achieve a ‘flat’ phase front at the test plane) is sometimes inconviniently long. In these instances, the compact range of Figure 1 may be used as an alternate. In this range, the spherical wave radiated by the range source antenna is converted to an approximately plane wave by a large parabolic reflector. The antenna to be tested is immersed in this plane wave, at a location that is well within the near-field of the reflector. Also, for many antennas of interest, the reflector is likewise in the near-field of the test antenna, although this is not a requirement. (For those cases where the reflector is in the far field of the test antenna, there is little motivation to use a compact range, since a conventional far-field range of the same length would suffice.)

Estimation of the size, location, and power-density of the 'bright spot' in a compact antenna range
P.N. Richardson (Texas Instruments Incorporated), November 1985

When performing far-field testing on large-aperture antennas, the range length 2D2/? (that is needed to achieve a ‘flat’ phase front at the test plane) is sometimes inconviniently long. In these instances, the compact range of Figure 1 may be used as an alternate. In this range, the spherical wave radiated by the range source antenna is converted to an approximately plane wave by a large parabolic reflector. The antenna to be tested is immersed in this plane wave, at a location that is well within the near-field of the reflector. Also, for many antennas of interest, the reflector is likewise in the near-field of the test antenna, although this is not a requirement. (For those cases where the reflector is in the far field of the test antenna, there is little motivation to use a compact range, since a conventional far-field range of the same length would suffice.)

Far field pattern correction for short antenna ranges
G.E. Evans (Westinghouse Electric Corporation), November 1985

Antennas are designed to operate with planar phase fronts, but are usually tested on finite length ranges that produce curved phase fronts. The result is a pattern error near the main beam. For conventional antennas the accepted range length requirement is R>2D2/? which produced a spherical phase error of 22.5 at the perimeter of a diameter D at wavelength ?. This, in turn, causes a 35 dB shoulder. For ultra low sidelobe antennas (ULSA) even longer ranges have been suggested. Such range sizes may be unavailable as well as undesirable, since the larger the range the more difficult it is to eliminate reflections.

Design of a multipurpose antenna and RCS range at the Georgia Tech Research Institute
C.P. Burns (Georgia Tech Research Institute),N.C. Currie (Georgia Tech Research Institute), N.T. Alexander (Georgia Tech Research Institute), November 1985

The design of a multipurpose Antenna/RCS range at GTRI is described. A novel approach to design of the far-field antenna range utilizes the bottom 40-foot section of a 130-foot windmill tower. The top 90-foot section is used as the main support for a slant RCS measurement range offering a maximum depression angle of 32º. A 100-tom capacity turntable, capable of rotating an M1 Tank, is located 150 feet from the 90-foot tower. The rigidity and stability of the tower should allow accurate phase measurement at 95 GHz for wind speeds up to 10 mph. In addition, a 500-foot scale-model range uses the ground plane effect to enhance target signal-to-noise and is designed to be useful at frequencies up to 18 GHz. Initially, the radar instrumentation to be utilized with the ranges includes several modular instrumentation systems and associated digital data acquisition equipment at frequency bands including C, X, Ku, Ka, and 95 GHz. The properties of these systems, which include coherence, frequency agility, and dual polarization, are discussed.

Pulsed, computer-controllable receiver and exciter having wide instantaneous bandwidth for testing active-element phased arrays
P.N. Richardson (Texas Instruments Incorporated), November 1985

This paper describes a receiver and exciter built by Texas Instruments for automated testing of electronic-scan antennas. The equipment is suitable for both near-field and far-field testing, and is programmable through a General-Purpose Interface Bus (GPIB) conforming to IEEE Standard 488. A two-channel design is described, but the technology is equally applicable to receivers from one to three (or more) channels. The receiver outputs are digitized as 10-bit I and Q (In-phase and Quadrature) components.

G/T measurement of highly directive antenna systems
G.M. Briand (Harris Corporation), November 1984

A technique for improving the accuracy of G/T measurements of highly directive antennas is introduced. The technique presents was developed to overcome uncertainties in ephemeral information, antenna positioning, system gain stability, and other random and nonrandom phenomena. The particular application discussed uses Casseiopeia-A as a noise source but the technique can be adapted for use with other extraterrestrial noise sources.

Cylindrical near field test facility for UHF Television Transmitting Antennas
J.A. Donovan (Harris Corporation),E.B. Joy (Georgia Institute of Technology), November 1984

This paper describes a horizontal, cylindrical surface, near-field measurement facility which was designed and constructed in 1984 and is used for the determination of far field patterns from near field measurement of UHF television transmitting antennas. The facility is also used in antenna production as a diagnostic and alignment tool.

Structural Design of a vertical antenna boresight 18.3- by 18.3-M planar near-field antenna measurement system
G. R. Sharp (NASA),P. A. Trimarchi (NASA) J.S. Wanhainen (NASA), November 1984

The near-field antenna testing technique is now an established testing approach. It is based on the work done over a twenty-year period by the National Bureau of Standards (Boulder, Colorado), The Georgia Institute of Technology and others. The near-field technique is used for large aperture, high frequency antennas where the antenna to probe separation necessary to test in the far-field of the antenna is prohibitively large.

Real time remote data gathering
D. Kadron (Westinghouse Electric Corporation), November 1984

The ability to gather real-time data from a remote site is of significant value in the far-field test of large scale non-reciprocal antenna arrays. With the advent of microprocessors, digitally controlled test equipment, and high speed data links, what was once impossible has not only become feasible but also economically realizable. This paper discusses the design of a remote data-gathering capability currently on-line at the Westinghouse Ridge Road Antenna Range. The system described is a computer-controlled phase and amplitude measuring technique remoted over a 1/3 mile range with a 56K baud fiber-optics data link. Considerations of system configuration, timing, protocol, error-detection and self-diagnostics are discussed.

Obtaining bistatic data utilizing a monostatic measurement system
P. Zuzolo (Fairchild Republic), November 1984

A monostatic radar measurement system at the U.S. Navy Pacific Missile Test Center (PACMISTESTCEN) located at Pt. Mugu, California was utilized to obtain incidence angle performance of radar absorbing structure (RAS) panels. The traditional methods of obtaining reflectivity data for absorptive materials over a range of incidence angles is a technique known as the NRL arch. Developed over 30 years ago by the U.S. Naval Research Laboratory, the technique utilizes moveable bistatic antennas on an arch equidistant from the test material panel in order to obtain incidence angle data.

Effects of the alignment errors on ahorn's crosspolar pattern measurements. Application to L-SAT propagation package antennas.
M. Calvo (Universidad Potitecnica de Madrid),J.L. Besada (Universidad Potitecnica de Madrid), November 1984

When low crosspolar pattern measurements are required, as in the case of the L-SAT Propagation Package Antennas (PPA) with less than -36 dB linear crosspolarization inside the coverage zone, the use of good polarization standards is mandatory (1). Those are usually electroformed pyramidal horns that produce crosspolar levels over the test zone well below the -60 dB level typically produced by the reflectivity of anechoic chambers. In this case the alignment errors (elevation, azimuth and roll as shown in fig. 1) can become important and its efects on measured patterns need to be well understood.

A Figure of merit for evaluating signal processing antennas
E. Jacobs (Aerospace Corporation), November 1984

In recent years a new class of reflector antennas utilizing array feeds has been receiving attention. An example of this type of antenna is a reflector utilizing a moveable array feed for beam steering. [1]-[3]. Due to the circuitry required to adjust the weights for the various feed array elements, an appreciable amount of loss can be introduced into the antenna system. One technique to overcome this possible deficiency is to place low noise amplifiers with sufficient gain to overcome the weighting function losses just after each of the feed elements. In the evaluation of signal processing antennas that employ amplifiers the standard antenna gain measurement will not be indicative of the antenna system’s performance. In fact, by only making a signal measurement, the antenna gain can be made any arbitrary value by changing the gains of the amplifiers used. In addition, the IEEE Standard Test Procedures for Antennas [4] does not cover the class of antennas where the amplifier becomes part of the antenna system. There exists a need to establish a standard of merit or worth for multi-element antenna systems that involve the use of amplifiers. This communication presents a proposed figure of merit for evaluating such antenna systems.

A New antenna test facility at General Electric Space Systems Division in Valley Forge, PA.
R. Meier (General Electric Co.), November 1984

This paper describes the new antenna test facility under construction at General Electric Space Systems Division in Valley Forge, PA. The facility consists of a shielded anechoic chamber containing both a Compact Range and a Spherical Near-Field Range. In addition, it provides for a 700’ boresight range through an RF transparent window. The facility will be capable of testing antenna systems over a wide frequency range and will also accommodate an entire spacecraft for both system compatibility and antenna performance tests.

Fourth generation indoor range
K.S. Kelleher, November 1984

The measurement of microwave antennas indoors began with the advent of commercial absorbing material. The use of absorbers can be traced back to a 2 gHz material developed by the Dutch in the Thirties. During the Forties, considerable progress was made on absorbing materials, but even after World War II, security considerations limited the application. Some materials found use as indoor shields for antenna tests, but limited bandwidth limited the utility of these materials. When a broad band absorber was developed the antenna experts did not believe that this material would be made commercially because they presumed a limited market.

Using the HP 8510 network analyzer to measure the radiation patterm of a dipole antenna using time domain and gating to remove the effects of ground clutter
J. W. Boyles (Hewlett-Packard Company), November 1984

A classical problem encountered when measuring the far-field radiation pattern of an antenna in a medium-distance range is the degradation that occurs when undesirable reflections (from the ground or nearby objects) are present. To reduce this problem, the source and test antennas are often installed on towers to remove them from the reflective objects, RF absorptive materials are used to reduce the magnitude of the reflected signals, and often the reflective objects in the range are adjusted in order to null out the reflections and “clean up” the range. These solutions are often limited in their effectiveness and can be prohibitively expensive to implement.

Real time remote data gathering
D. Kadron (Westinghouse Electric Corporation), November 1984

The ability to gather real-time data from a remote site is of significant value in the far-field test of large scale non-reciprocal antenna arrays. With the advent of microprocessors, digitally controlled test equipment, and high speed data links, what was once impossible has not only become feasible but also economically realizable. This paper discusses the design of a remote data-gathering capability currently on-line at the Westinghouse Ridge Road Antenna Range. The system described is a computer-controlled phase and amplitude measuring technique remoted over a 1/3 mile range with a 56K baud fiber-optics data link. Considerations of system configuration, timing, protocol, error-detection and self-diagnostics are discussed.

Satellite near field test facility
R.D. Ward (Hughes Aircraft Company), November 1984

The paper describes a near field facility developed at Hughes Aircraft Space and Communications Group for the purpose of performing measurements on satellite antennas. The facility is designed for planar near field scanning with capability for adding cylindrical scanning. The facility has a scanner with a 21 foot square range and is capable of measuring large antennas with operating frequencies up to 15 GHZ. The measurement system is designed for testing multi-beam, multi-frequency antennas. Data collection, scan control and data analysis functions are all controlled by a single computer system. Growth plans include the addition of an array processor for the ability to perform Fast Fourier Transforms in near real time. Results for the antennas which have been measured will be shown along with far field range data for comparison.

Near field RCS measurements
E.B. Joy (Georgia Institute of Technology), November 1984

A planar surface, near-field measurement technique is presented for the near-field measurement of monostatic radar cross-section. The theory, system configuration and measurement procedure for this technique are presented. It is shown that the far field radar cross-section can be determined from the near field measurements. An associate near-field radar cross-section measurement technique is presented for the measurement of bistatic near field radar cross-section. The bistatic technique requires a plane wave illuminator in addition to the planar surface near field measurement system. A small compact range is used as the bistatic illuminator. Bistatic near-field measurements are presented for a simple target.

Software and hardware for spherical near-field measurement systems
D. W. Hess (Scientific-Atlanta, Inc.),C. Green (Scientific-Atlanta, Inc.), B. Melson (Scientific-Atlanta, Inc.), J. Proctor (Scientific-Atlanta, Inc.), J. Jones (Scientific-Atlanta, Inc.), November 1984

The following features have been added to the spherical near-field software set which is available for the Scientific-Atlanta 2022A Antenna Analyzer. Gain Comparison Measurement Probe Pattern Measurement and Correction Thermal Drift Correction Spherical Modal Coefficient Analysis Far-Field, Radiation Intensity, and Polarization Display The addition of the probe pattern correction permits antenna measurements to be made at range lengths down to within several wavelengths of touching. The addition of probe polarization measurement permits three antenna polarization measurements to be made and analyzed as well as two antenna polarization transfer measurements. Correction for phase and amplitude errors attributable to thermal drift is accomplished by the return-to-peak method. Reduction of antenna patterns to spherical modal coefficients is an essential feature of spherical near-field to far-field transforms and is offered as an augmentation to antenna design. Far field display features permit the far fields of antennas to be presented in both component and radiation intensity formats, in circular, linear and canted linear polarization components.

Software and hardware for spherical near-field measurement systems
D. W. Hess (Scientific-Atlanta, Inc.),C. Green (Scientific-Atlanta, Inc.), B. Melson (Scientific-Atlanta, Inc.), J. Proctor (Scientific-Atlanta, Inc.), J. Jones (Scientific-Atlanta, Inc.), November 1984

The following features have been added to the spherical near-field software set which is available for the Scientific-Atlanta 2022A Antenna Analyzer. Gain Comparison Measurement Probe Pattern Measurement and Correction Thermal Drift Correction Spherical Modal Coefficient Analysis Far-Field, Radiation Intensity, and Polarization Display The addition of the probe pattern correction permits antenna measurements to be made at range lengths down to within several wavelengths of touching. The addition of probe polarization measurement permits three antenna polarization measurements to be made and analyzed as well as two antenna polarization transfer measurements. Correction for phase and amplitude errors attributable to thermal drift is accomplished by the return-to-peak method. Reduction of antenna patterns to spherical modal coefficients is an essential feature of spherical near-field to far-field transforms and is offered as an augmentation to antenna design. Far field display features permit the far fields of antennas to be presented in both component and radiation intensity formats, in circular, linear and canted linear polarization components.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31