AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Compact Range

Amplitude and direction evaluation of very small stray signals in compact range
huaian zhou,Xiaolong Niu, xiaoping zhang, November 2007

This paper presents a novel method to evaluate very small stray signals in compact range. The ripples of signals probed by an omni-directional antenna along the orthogonal direction of the bore sight could be treated as signals in time domain. Transforming the probed data with fast Fourier transform (FFT), the direction and amplitude (relative to the test signal) of each stray signal could be obtained. To improve the accuracy, time domain software gating should also be used in calibrating the measurement error of amplitude and phase. The presented method has the ability to measure very small stray signals with good angle resolution. The method has been tested by both simulation using MATLAB and experiment in the compensated compact range CCR120/100 in CAST using a monopole antenna centered on a circular ground plane as a probe. Good results were obtained.

Polarisation Dependent Scattering From The Serrations of Compact Ranges
Frank Jensen, November 2007

Serrations are often applied at the edges of compact-range reflectors in order to reduce the scattering from the edges into the quiet zone. At low frequencies the serrations show different scattering of the field at the two polarisations: parallel to and perpendicular to the serration teeth. This has been verified by modelling a range by the Method of Moments (MoM). The size of the range reflectors is about 7.5 m by 10 m which make the re-flectors difficult to handle by MoM even at a fre-quency which is low for the range, viz. 1.7 GHz, in which case the reflectors are each 2400 wavelengths squared. A narrow strip, horizontal or vertical, across the re-flector and closed by a single serration tooth at each end is shown to give a good prediction of the field along a line parallel to the strip in the quiet zone. By this simple model of the range it has been demon-strated that the quiet-zone field depends highly on the polarisation. When the polarisation is parallel to the teeth the quiet-zone field has ripples which are 0.3 dB peak-to-peak, but for the perpendicular polarisation the field variations are 0.8 dB peak-to-peak. The results are compared to quiet-zone fields deter-mined by Physical Optics (PO).

Indoor Spherical 3D RDC Near-field Facility
Y. Chevalier, P. Minivielle,F. Degery, P. Berisset, November 2007

Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern. In order to perform more complete characterizations, a spherical experimental layout has been developed at CEA for indoor near field monostatic RCS assessment. The experimental layout is composed of a motorized rotating arch (horizontal axis) holding the measurement antennas. The target is located on a polystyrene mast mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allows full 3D near field monostatic RCS characterization. Two bipolarization monostatic RF transmitting and receiving antennas are driven by a fast network analyser : - an optimised phased array antenna for frequencies from 800 MHz to 1.8 GHz - a wide band standard gain horn from 2 GHz to 12 GHz. This paper describes the experimental layout and the numerical post processing computation of the raw RCS data. Calibrated RCS results of a canonical target are also presented and the comparison with compact range RCS measurements is detailed.

Novel Edge Treatment of Truncated Field Probe Data
Paul Kolesnikoff, November 2007

If an acquired RF field data set captures all the radiated energy, transformations will have minimal errors. However, it is sometimes impractical to capture the complete radiated field. In this case, some sort of edge treatment is required before transforming the data set. Usually, a function such as a cosine taper is added to the edge to minimize transformation errors. Unfortunately, these functions may be discontinuous to the measured data and its’ derivatives. This paper will present a method of truncation which matches the measured data and its’ derivatives. It will then transform the RF field data to the compact range reflector surface and compare the results of several truncation methods.

Blended Rolled Edge Reflector Alignment Method
Paul Kolesnikoff, November 2007

In order to ensure proper measurements in the compact range, the reflector needs to be aligned within the range. Unfortunately, the reflector does not have any direct method of leveling or locating such as straight edges or fiducials at known locations. The only known reference is the ideal point cloud. As the point cloud is given, it is oriented correctly in the range. So by centering the point cloud in the range, the compact range reflector can be aligned to the range by minimizing its deviation from the ideal point cloud. This paper will go through the mathematics used to accomplish this alignment in the translation along and rotation about the three primary axes. In addition, it will give a method of determining reflector twist. The method is sufficiently generic that it can be applied to other shapes and figures of merit.

Quazi-Compact Range
David A. Thompson,Robert Dybdal, Frank Pisano, November 2007

Conventional compact ranges use a reflector antenna’s near field to produce the plane wave illumination needed to measure a second antenna under test (AUT). The quasi-compact range described here uses a conventional reflector antenna at a greater range separation than conventional compact ranges, but still within the reflector’s near field. Its illumination allows the antenna evaluations at smaller range separations than the AUT’s far-field distance and allows modification of a current far-field range with a reflector range antenna to measure larger test articles than normally acceptable. This approach preserves many advantages of a standard compact range including reduced multipath and high measurement sensitivity that result from the collimated near field of the illuminating reflector antenna. Additionally, a conventional reflector antenna is used without requiring edge treatments. Experience with a four-foot prime focus parabola operating at 18 GHz illustrates this technique. The measured quiet zone fields compare favorably with calculated values using the GRASP codes. Likewise, measurements of a 20”-diameter offset reflector antenna compare favorably with GRASP results.

Design Issues for a maverick RCS Instrumentation Radar
K. Vaccaro,D. Mensa, D. Loucks, November 2006

This paper describes the motivation and major issues related to the design of an RCS radar instrumentation system for use in a compact range. The high degree of sophistication implemented in commercially-available radar systems renders them subject to significant MTTR (mean time to repair) with corresponding losses in range productivity. The objective of the design effort was to develop a system of minimal complexity, maximally suited to troubleshooting and repair by laboratory personnel, while retaining the operational efficiency normally provided by the commercial systems.

Comparison of RCS Measurement of a NASA Almond Using Classical Compact Indoor Facility and a new Phased Array Antenna
J. De Kat, November 2006

CEA-Cesta has developed a new phased array antenna for RCS dual polarization wide bandwidth measurement in V/UHF bands. This array enables us to enhance signal to noise ratio especially at low frequencies. It is composed of 3 sub arrays dedicated each to one frequency band. The innovative design allows installing it in one of CEA/CESTA RCS facilities called “CAMELIA”. In order to validate this array in the highest sub-band [700 to 2000MHz], we measured in both HH and VV polarizations the near field RCS of a 2.5m long NASA almond target. This canonical object has been made of polystyrene coated with conducting nickel varnish. It has been hung on an eight wires rotating positionner. The results are compared with the data acquired in a classical RCS compact range and with the output of the 3D finite element code called ODYSSEE developed at CEA.

Spherical Near Field Radome Test Facility for Nose-Mounted Radomes of Commercial Traffic Aircraft
M. Boumans,J. Wagner, November 2006

Typically radome tests are performed on outdoor far field ranges or compact ranges. ORBIT/FR has designed, build and qualified a unique spherical near-field radome test facility for the nose-mounted radomes of commercial traffic aircraft for the so-called “after repair” tests according to the international standard RTCA/DO-213, as well as the aircraft manufacturers Component Maintenance Manuals. The facility is extremely compact (chamber size 5.7 m x 5.2 m x 3.2 + 0.7 m, L x W x H), can handle radomes as small as used on the Canadair and as large as used on the Airbus-380 and can be installed directly in the repair workshop for such radomes. The tests performed are transmission efficiency and side lobe level increase. The system is completely automated, so that a workshop technician can operate the facility. Utmost attention has been paid to operational aspects and both operator and equipment safety. After the measurements are done, a test report is fully automatically generated according to RTCA requirements and classifications. The facility is equipped to test all standard Airbus, Boeing, Canadair and Dash nose radomes.

Optimization of Large Compact Range Reflector Installation and Verification Methodology
j. Aubin,C. Kelly, C. Nadovich, November 2006

A large rolled edge compact range system featuring a 12’H x 16’W quiet zone has been designed, fabricated, installed, and tested in a large aerospace test facility. During the program, a high precision alignment methodology was utilized in conjunction with electromagnetic prediction capability to verify both mechanical and electrical performance while still under trial assembly conditions at the factory. A coherent laser radar (CLR) was utilized to measure the reflector surface on a very fine grid, and the electromagnetic (EM) quiet zone performance was calculated from the raw CLR data using a Physical Optics (PO) model. Despite extremely high surface accuracy of the panels, this evaluation methodology highlighted systematic alignment errors in the reflector system, and guided the process of correcting these errors to achieve a final factory verification assembly for the entire 20’H x 24’W reflector system of better than 0.001” over the quiet zone section of the reflector, and 0.004” rms over the entire reflector. This procedure was also utilized for the on-site installation to achieve alignment of the reflector to an AUT positioning system using the CLR, as the positioning system and chamber were already existing and operational. Thus, it was required to align the reflector to the positioning system, and not the positioning system to the reflector as is usually the case. A unique vertical carousel feed system was also aligned using this procedure. Predicted EM results were again used to finalize alignment on site prior to quiet zone field probe evaluation. This paper summarizes the overall alignment and EM evaluation process, and presents results for the installed compact range reflector system.

Use of a Compact Range to Measure Satellite TV Reflectors And Low Noise Block Downconverter Feeds
j. Aubin,S. Cook, November 2006

Satellite TV reflectors for home use, provided to the public by service companies such as DIRECTV, have many features which must be adequately characterized prior to design release, including: • Multiple Beam Frequency Re-use • FCC Sidelobe Envelope Verification • Circular Polarization Isolation These features must be adequately tested at frequencies up to Ku band and beyond. The use of a far-field range is impractical, as some of the reflectors measure several feet in diameter, and thus requires a range length of several hundred feet at Ku band. Near-field testing requires a full scan to determine a single cut for evaluation of FCC compliant sidelobe performance. Thus, a compact range is a logical alternative for measurement of this class of antennas. The compact range can provide a quick assessment of multiple beam coverage performance and pass/fail analysis against FCC sidelobe curve specifications. In addition, the feeds for these antennas often use Low Noise Block (LNB) Downconverters that are built in as part of the feed assembly. Measuring the output of an LNB does not yield the phase information required to determine all polarization parameters. A spinning linear measurement with some unique processing was implemented on this range to determine the full polarization characterization, using some elementary assumptions about polarization sense. This paper describes the implementation of a compact range based measurement facility for satellite antenna testing, with emphasis on the circular polarization measurement of the LNB assembly, capability for comparison against FCC sidelobe levels, and measurement of offset beams featuring frequency re-use capability.

Integration and Testing of a Transmission Line System for an Electromagnetically Transparent Antenna Array
E. Lee, November 2006

A transmission line system has been developed for an electromagnetically transparent antenna array. The goal was to provide equal signal distribution to the array elements while maintaining the transmissivity of the antenna. The transmission lines consist of microstrip directional power couplers which are fed in series. This reduces the transmission line length needed. The transmission line was built, tested, and integrated with an array of circular polarized array elements mounted over a frequency selective surface (FSS) ground plane. Preliminary bench tests performed on the integrated array with a small test dipole indicated that the transmission lines provided uniform signal distribution. Outdoor far field measurements of the integrated antenna indicated that the antenna performance was satisfactory. The integrated antenna array was tested in the compact range located at the ElectroScience Laboratory at The Ohio State University. These tests were used to accurately characterize the antenna performance at S band and the transmissivity properties of the integrated array at L band. The measured antenna pattern and beamwidth were consistent with predictions. Transmissivity of the antenna as viewed by a second antenna was also consistent with predictions.

Obtaining High Quality RCS Measurements with a Very Large Foam Column
M.C Baggett,T. Thomas, November 2005

A large compact range facility required a foam column for RCS testing where the center of the quiet zone was six meters above the floor level. The RCS measurement after vector background subtraction, had to be accurate down to a –50 dBsm level from 1.5 GHz to 40 GHz. A foam column was constructed from a single billet of material. The foam column was evaluated as to its RCS level in both whole body and ISAR imaging modes. This paper describes the specification, construction and RCS evaluation of this column in the compact range facility. The column was evaluated at single frequencies and with RCS images from 2 GHz to 36 GHz using a gated CW radar. Data is presented that shows the effects of the column on the response of a calibration sphere and the response of the column itself. A study of the foam column imaging response used as the background for vector background subtraction is also described. Targets in the –60 dBsm range were successfully imaged with vector background subtraction of the foam column.

Low Cost Satellite Payload Measurement System
J. Migl,W. Lindemer, W. Wogurek, November 2005

The performance of modern Satellites Antennas and Payloads is characterized by physical parameters like e.g. Antenna Pattern and Gain; EIRP, Flux Density, G/T and the overall PIM-performance. The available time frame for measurement of these parameters is getting constantly shorter. The EADS Astrium GmbH Compensated Compact Range (CCR) allows a time efficient measurement of all payload parameters with high accuracy under controlled environmental conditions. In addition to an efficient measurement facility high-performance measurement equipment is required. The economical budgets of most space programs demand the application of well-known measurement techniques in a cost efficient way. EADS Astrium GmbH supported by Agilent Technologies GmbH has developed an easy to handle and therefore cost optimized measurement platform for Satellite Payload Measurements. This platform consists mainly of a generic Agilent switch matrix operating up to 40GHz which can be connected to a wide range of measurement equipment. The matrix allows a highly flexible routing of the RF uplink and downlink signals including reference paths. Integrated and/or external RF components, like amplifiers, attenuators, and hybrids can be added to the paths, depending on the required test configuration. Starting from a minimum configuration the system can be modularly upgraded to satisfy any further test requirements. The software interface utilizes standard protocols and can be therefore easily addressed by any user specific measurement software. The EADS Astrium GmbH Advanced Antenna Measurement System (AAMS) includes an optional payload toolbox which provides a modular concept expandable for additional test functions.

Precise Base Stations Antenna Measurements On A Compact Range
H. Eriksson, November 2005

The measurement uncertainties for base station antenna gain measurement are in general very high, ± 1dB could normally be expected and there are examples of much higher uncertainties. Applying the uncertainties above to the cell planning tools gives at the end a very large uncertainty on the number of cells needed to cover an area. The extra cost for this uncertainty could be an extra 15-20% of the site costs or 10-20% less coverage than expected. This paper identifies the different uncertainty sources and suggests how to optimize the measurement set-up to reduce uncertainties as much as possible during the measurement and compensate for the remaining uncertainties after the measurement.

Evaluation of a Compact Range Reflector System For Use as an Antenna Range in a Small Anechoic Chamber
R. Bender,L.H. Hemming, November 2005

The electromagnetic field as projected by a 12 ft. prime focus offset fed compact range reflector with r-card edge terminations located in an existing chamber 20 ft. high, 30 ft. wide and 66 ft. long was probed using a broadband antenna to sample the field at 12 inch increments from the center line to the anechoic chamber wall. The purpose of the test was to evaluate the field roll off in dB to see if a narrower room would significantly impact the performance of the existing reflector system. The new chamber is 20 ft. high, 20 ft. wide and 40 ft. long. The probe data at six frequencies from 2.1 to 17.8 GHz indicated that 10 ft. off the center line the measured field level was -20 dB or greater below the level of the test region, which was our maximum acceptable field level goal. It is expected that the sidewall absorber will provide over 20 dB of bistatic attenuation for a total reflected field level of -40 dB, and is sufficient for conducting antenna pattern measurements in an anechoic chamber. Key Words: Compact Range, R-Card Terminations, Absorber Performance

Electromagnetic Performance of a Carbon Composite Compact Range Reflector
D. Hess,D. Smith, November 2005

This paper describes the first experience gained with a new carbon composite compact range reflector (C3R2). The reflector’s backup structure is made entirely of carbon fiber reinforced composite material. An outstanding advantage of this design is its superior mechanical and thermal-environmental stability. This yields improvement in the overall performance. We have revised the process by which compact range reflectors are designed and modeled, making use of professionally authored software. We describe the results of electromagnetic field probe measurements made at the factory. Special attention is given to new results at W-band – in the 75 to 100 GHz regime.

Sidelobe Accuracy Improvement in a Compact Range by using Multiple Feed Locations
M. Boumans,H. Eriksson, November 2005

A generally practiced way to improve the sidelobe accuracy in antenna measurements is by repeating and averaging the measurements in different positions in the quiet zone (also referred to as APC or AAPC, depending on the application). An alternative new way for improving the accuracy of compact range measurements is by moving the compact range feed in different locations. This can easily be achieved for both horizontal and vertical directions. Although feed scanning causes a boresight shift, this can be easily compensated if the feed positions are selected intelligently. A significant measurement speed improvement can be realized by using multiple feeds in the relevant locations, instead of moving a single feed sequentially into these locations. Feed scanning APC has been successfully tested in the Ericsson Microwave Systems Compact Range, where it is now practiced in high accuracy radar antenna measurements.

Introduction to the New MIT Lincoln Laboratory Suite of Ranges
A. Fenn,G. Somers, M. Shields, November 2004

A new antenna and RCS measurements facility consisting of four anechoic chambers has recently been constructed at MIT Lincoln Laboratory. The facility was designed with a rapid prototyping focus. The four chambers include a tapered chamber covering the 225 MHz to 18 GHz band, a millimeter wave rectangular chamber covering 4 to 100 GHz, a large rectangular anechoic chamber covering 150 MHz to 20 GHz, and a large compact range covering 400 MHz to 100 GHz. The compact range will be highlighted.

Blended Rolled Edge Reflector Design for the New Compact Range at MIT Lincoln Laboratory
T. Lee,A. Fenn, I. Gupta, W. Burnside, Somers., November 2004

Compact range reflectors, in general, are designed so that the parabolic section of the reflector is equal or larger in size than the desired quiet zone size. Next, proper edge treatment (serrated edge or blended rolled edge) is applied to the parabolic section to reduce the diffraction from the rim of the parabolic section in the quiet zone. With proper edge treatment, the reflector size can be bigger than the available space. Thus, there is a need to reduce the overall size of the reflector. In the case of blended rolled edge compact range reflectors, the total surface is a reflecting surface. Also, near the junction between the parabolic section and the edge rolled section, the surface is very close to the parabolic section. Thus, the fields reflected from this part of the reflector are nearly planar and can be used to increase the size of the quiet zone. This, in turn reduces the total size of the reflector. This concept has been applied to design a blended rolled edge reflector for MIT Lincoln Laboratory's new compact range. In this paper, the design approach will be presented and analytical performance of the reflector will be discussed. It will be shown that the over all performance of the reflector is better than the performance of the same size reflectors designed using the conventional approach.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31