AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Compact Range

Advancements in Achieving What is Asked of a Compact Range
David J. Wayne,Donald Bodnar, Ph.D, John McKenna, November 2013

Phase variation = +/-10 deg. 18 to 40 GHz Phase variation = +/-20 deg. 40 to 110 GHz Cross Polarization = -30 dB III. MAXIMUM AVAILABLE SPACE Consistency of performance across a waveguide band levies demands on compact range feeds. Because of the constraint of the room size, the design starts with determining the maximum space available for the This paper addresses a recent compact range development by MI reflector. The next step will be to determine the combination of Technologies that achieves desired extended low frequency and reflector body and edge treatment size within that space to millimeter wave performance (1 to 110GHz) while maintaining a deliver the desired performance. To determine the space cost effective reflector size and a small range footprint. The paper available for the reflector a chamber layout analysis is will explore the conventional rule-of-thumb relationships performed. Appropriate absorber is selected and, allowing for between feed, reflector, edge treatments and range geometries an air gap of at least 2 wavelengths at the lowest desired while contrasting them to the resultant design. The paper will frequency between the absorber and the reflector, and allowing highlight an impressive new family of compact range feeds and advancements in cost effectively achieving a superior reflector height for the compact range feed positioner yields the surface. allowable reflector dimensions to be 194 inches high and 222 inches wide as shown in Table 2. The combination of reflector

Implementation of a Burst-Mode Technique and Variable Coherent Integration to Minimize Radar Data Collection Time
Christopher Fry,Charles Walters, John Raber, November 2013

Abstract— Compact ranges are ideal settings for collecting low-RCS measurement data at high pulse rates. However, until recently, two operating constraints have limited the efficiency of instrumentation radar systems in this setting: (1) system delays limiting Pulse Repetition Frequency (PRF) and (2) fixed integration across frequency resulting in more time spent on certain frequencies than required. In this paper, we demonstrate the capability to significantly increase data throughput by using a Burst-Mode to increase the usable PRF and a frequency table editing mode to vary integration levels across the frequency bandwidth. A major factor in the choice of PRF for a specific application is system hardware delays. We describe the use of a Burst-Mode of operation in the MkVe Radar to reduce delays caused by physical layout of the instrumentation hardware. Burst-Mode essentially removes setup time in the system, reducing the time between pulses to the roundtrip time of flight from the antenna to the target. Most pulsed-IF instrumentation radar users fix the coherent integration level for the entire measurement waveform, even though the set level of integration may not be required at all frequencies to achieve the desired sensitivity. We describe the use of a frequency table Parameter Editor Mode in the MkVe that allows the integration level to vary for each step in the waveform. We demonstrate the use of both methods to reduce data collection time by a factor of seven using a MkVe Radar installed in a compact range.

Scattering of residual field above and beyond the quiet zone of a compact range
Pax Wei, November 2013

Abstract: In order to characterize the Boeing 9-77 compact range, the empty chamber background was measured as a function of frequency, polarization, and the azimuth angle of the upper turn-table (UTT). The results exhibited a near-field diffraction pattern with enlarged hot-spots on a 4-fold symmetry [1]. A 2-D FFT on the diffraction pattern yielded a mapping on the relative arrangement of the absorbers on the UTT [2]. In this paper, we take a closer look at the scattering geometry of the UTT as illuminated by the residual field above and beyond the quiet zone (QZ). The different responses in VV and HH are discussed. The enhanced diffraction due to a “blazed grating” condition is identified and analyzed.

A 100 GHz Polarimetric Compact Radar Range for Scale-Model Radar Cross Section Measurements
Guy DeMartinis,Michael Coulombe, Thomas Horgan, Brian Soper, Jason Dickinson, Robert Giles, William Nixon, November 2013

Abstract— A fully polarimetric compact radar range operating at a center frequency of 100 GHz has been developed for obtaining radar cross section, inverse synthetic aperture radar imagery and high range resolution profiles on targets and structures of interest. The 100 GHz radar range provides scale-model RCS measurements for a variety of convenient scale factors including W-Band (1:1 scale), C-band (1:16 scale), and S-band (1:26 scale). An overview of the radar range is provided in this paper along with measurement examples of ISAR scale-model imaging, scale-model through-wall imaging, and preliminary kHz sweep-rate Doppler that demonstrate a few of the diverse and unique applications for this system. The 100 GHz transceiver consists of a fast-switching, stepped, CW microwave synthesizer driving dual-transmit and dual-receive frequency multiplier chains. The stepped resolution of the system’s frequency sweep is sufficient for unambiguous resolution of the entire chamber. The compact range reflector is a CNC machined aluminum reflector edge-treated with FIRAM™-160 absorber serrations and fed from the side to produce a clean quiet zone. This range is the latest addition to a suite of compact radar ranges developed by the Submillimeter-Wave Technology Laboratory providing scale-model radar measurements at nearly all of the common radar bands.

A Detailed PO / PTD GRASP Simulation Model for Compensated Compact Range Analysis with Arbitrarily Shaped Serrations
Carsten Schmidt, Alexander Geise, Josef Migl, Hans-Jürgen Steiner, Hans-Henrik Viskum, October 2013

Compensated compact ranges offer accurate testing techniques for large devices under test. The quiet zone field performance is affected by diffracted field components from the sub and main reflector edges even though they are equipped with serrations in order to reduce this effect. The size, shape, and alignment of the serrations have a strong influence on the range performance and are important design parameters. For performance estimation and optimization, detailed EM simulation models are required. Integral equation methods like the Method of Moments (MoM) with Multilevel Fast Multipole (MLFMM) acceleration promise accurate simulation results. However, the memory requirements limit simulations nowadays to lower frequencies due to the electrical size of the compact range reflectors. For example, the main reflector of Astrium's Compensated Compact Range CCR 120/100 including serrations is 1860 ? by 1600 ? in size at 40 GHz. Asymptotic methods are suitable for objects of this size, however, the accuracy has to be investigated and is related to the degree of detail in the model. A detailed simulation model based on the Physical Optics (PO) / Physical Theory of Diffraction (PTD) method is developed in GRASP. Each serration is realized as an individual scatterer and can thus be modeled with arbitrary shape and orientation. Different modeling techniques have been applied in order to realize an accurate simulation model with acceptable runtime. In this paper, the simulation model will be described in detail and a comparison of the quiet zone fields will be drawn with the MoM / MLFMM tool Feko as well as with quiet zone probing measurements.

Focusing 3D Measured Field-Probe Data To Image A Compact Range Reflector
Scott McBride, October 2013

A diagnostic technique was published over 20 years ago on imaging compact-range reflectors by focusing plane-polar field-probe data. At that time, only synthesized data had been evaluated. Since then, a few reflectors have exhibited performance lower than expected, and this technique has been successfully employed to improve that performance based on their measured data. This paper reviews the technique and discusses the results of processing those measured data sets. The technique produces an image of the estimated field amplitudes at the reflector surface that do not contribute to the desired quiet-zone plane wave. Point sources, line sources, and deformations over an area have all been successfully identified, often outside the projected circular boundary of the field-probe data. All measurements to date have used very coarse angular spacing with acceptable degradation in image quality.

Power Handling Considerations in a Compact Range
Marion Baggett, October 2013

More complex antennas with higher transmit power levels are being tested in compact range environments. AESA's and other phased array antennas can transmit significant power levels from a relatively small volume. Without consideration of the impact of the transmitted power levels for a given test article, human and facility safety could be at risk. This paper addresses designing a test chamber in light of these power handling considerations for high power antennas on two fronts: 1) A methodology is presented to determine the power levels seen by surfaces in the chamber that are covered with absorber material and 2) Calculating the power levels seen at the compact range feed due to the focusing effect of the compact range itself. A test case is presented to show the application of the methods.

Ground Reflection Error Mitigation for the US Army’s Electronic Proving Ground (EPG) Compact Range
Jeffrey Bean, Stephen Blalock, Michael Hutsel and Stewart Skiles, October 2013

Compact range measurement facilities have been used successfully for many years to characterize antenna performance as well as radar signature. This paper investigates strategies for improving compact range measurement accuracy by mitigating errors associated with ground reflections inherent in most range designs. A methodology is developed for strategically modifying, or patterning, the surface between the range source antenna and the reflector to reduce error terms, thereby increasing measurement accuracy. Candidate patterns were evaluated using a full-wave computational finite-difference time-domain (FDTD) model at VHF/UHF frequencies to determine baseline performance and develop trade rules for more advanced designs. Physical optics (PO) models were used to analyze the final design at the frequencies of interest.

Scattering Suppresion in a Combined Compact Range and Spherical Near-field Measurement Facility
Hammam Shakhtur, Rasmus Cornelius, Dirk Heberling, October 2013

Stray signals/scattering suppression techniques will be deployed to enhance measurements quality of a combined compact antenna test range (CATR) and spherical near-field (SNF) measurement facility. Spherical mode filtering and softgating techniques will be the focus of this paper. Using soft-gating the mutual effects between the CATR and SNF facilities will be shown and mitigated. The use of SNF decomposition to enhance the far-field measurements will be also shown. This contributes to a reduction of the costs arising from the need of absorbers to shield both facilities and cover the antenna's support structure.

“Defects” of Specular Patches in Elongated Anechoic Chambers
John Aubin,ORBIT/FR Inc., November 2012

Specular patches comprising pyramidal absorber components are frequently used in anechoic chambers to suppress potential DUT coupling with the side walls, floor and ceiling of the chamber. However, these specular patches also interact with the incident field radiated by the source antenna, compact range reflector, or tapered chamber feed illuminating the chamber. If the specular patch reflects the incident field in GO fashion, then the reflected field is incident on the absorptive back wall and is sufficiently attenuated there, so that there is no significant degradation of the field uniformity in the Quiet Zone due to the reflected field. If, however, the chamber is long, and the grazing angle of the incident field on the specular patches is relatively low, “non-specular” reflections incident on the Quiet Zone will perturb the field, and accordingly will degrade the field uniformity. If the chamber is operating at high frequencies (e.g., above several GHz) and the distance between the Quiet Zone and side walls is significant in terms of wavelengths, then the “non-specular” reflections will not impact the field uniformity to a noticeable extent, as they are attenuated in free space while propagating from the specular patches to the Quiet Zone. If the chamber is intended for operation at VHF/UHF frequencies, as is prevalent in tapered chambers, then the “non-specular” reflections may be the dominant factor affecting the Quiet Zone uniformity. In this paper the measured reflectivity in a tapered chamber with pyramidal specular patches is presented, illustrating a significant rise of the reflectivity over a portion of the VHF/UHF bands. Thorough investigation has shown the source of the degraded reflectivity to be the specular patch. This effect has been confirmed by simulation, and is analyzed by modeling the specular area as a periodic structure. Replacement of the specular patches by wedges has materially improved the reflectivity in the chamber, as will be shown by comparative reflectivity measurement results. For the application under consideration, the coupling between the DUT and sidewalls was below the specified minimum and, thus, advanced coupling suppression techniques were not required. For more stringent coupling requirements, the use of the ORBIT/FR patented “Two Level GTD” technology (see, for example, [1-4]) is a good choice to minimize reflectivity and DUT/sidewall coupling simultaneously.

Common Radar Cross Section & Antenna Gain Measurement Calibration
Douglas Morgan,Boeing Test & Evaluation, November 2012

Radar Cross Section (RCS) and Antenna measurement ranges share many common features and are often used for both purposes. Calibration of these dual-purpose ranges is typically done using the substitution method for both RCS and antenna testing, but with separate RCS and antenna standards. RCS standards are typically based on a geometric shape having a well known theoretical value – and corresponding small uncertainty. By contrast, antenna standards typically must be “calibrated” in a separate antenna calibration system to be used as a gain standard, often yielding higher uncertainties. This paper presents an efficient method for transferring an RCS measurement calibration to an antenna measurement range configuration, allowing a range to be used for both purposes with a single calibration. Insight into the best ways to re-configure the instrumentation between RCS and antenna testing is included. Validation measurements from a compact range are included along with an uncertainty analysis of the method.

Rod Dielectric Feed for Compact Range Reflector.
Nikplay Balabukha,Institute of Theoretical and Applied Electrodynamics of Russian Academy of Science (ITAE RAS)., November 2012

A dielectric rod feed with a special radiation pattern of a tabletop form used for the compact range reflector is developed and analyzed. Application of this feed increases the size of the compact range quiet zone generated by the reflector. The feed consists of the dielectric rod made of polystyrene; the rod is inserted into the circular waveguide with a corrugated flange. The waveguide is excited by the H11-mode. The rod is covered by the textolite biconical bushing and has a fluoroplastic insert in the vicinity of the bushing. Mathematical modeling was used to obtain the parameters of the feed for the optimal tabletop form of the radiation pattern. The problem of the electromagnetic radiation was solved for metal-dielectric bodies of rotation by method of integral equations with further solving of the problem of the synthesis for feed parameters. The dielectric rod feed was fabricated for the X-frequency range. Feed amplitude and phase patterns were measured in the frequency range 8.2-12.5 GHz. Presented results of mathematical modeling and measurements for X-range radiation patterns correlate well. It is shown that this feed increases by 20-25% the quiet zone of the compact range with reflector in the form of nonsymmetrical cutting of the paraboloid of revolution 5.0 . 4.5 m in size in the frequency range 8.5-10.0 GHz as compared to a conical horn feed.

Performance of Scanned Quiet Zones in Compensated Compact Ranges for Antenna and Payload Testing
Josef Migl,Astrium GmbH, November 2012

Large dual reflector compact ranges are typically designed for antenna and payload testing of spacecraft antennas and payload units. Astrium's Compensated Compact Ranges have two major advantages for such measurements: (a) A very small cross-polarization (< -40 dB over the entire test zone) for frequencies = 3 GHz due to the compensating reflector design, (b) A scanning capability of the test zone due to the short effective focal length of the reflector system. The first item is a necessary condition for precise spacecraft antenna measurements at which the cross-polar performance is an important requirement and was subject to multiple publications in the past. The second one, the scanning capability, is an additional feature that was addressed in the past, but has not been analyzed in detail so far. This paper addresses practical implementations, achieved performance figures of the latest installations and inherent limitations by the utilization of the scanned quiet zones at a CCR test facility for antenna and payload testing.

Measurements On Long And Rigid Objects For Radar Field Probe
P. S. P. Wei, November 2012

As a novel concept for field probes, RCS measurements on long rigid objects rotated within a small angular range about the broadside condition are reported. The rotation was maintained either in a horizontal (H) plane or in a vertical (V) plane containing the center of the quiet-zone (QZ). Processing the RCS data by DFT yields a spectrum which is recognized as the field distribution along that object. This spectrum compares extremely well to traditional field-probes taken earlier by translating a sphere across the QZ in H- or V-direction. Preliminary results at several S-band frequencies are presented and discussed.

Outdoor Far-Field Antenna Measurements System For Testing Of Large Vehicles
Doug Kremer, Alan Morris, Rachel Blake, Todd Park, John Proctor, November 2012

The Electronic Proving Ground's Antenna Test Facility at Fort Huachuca, Arizona has some of the most interesting testing structures in the world. These structures include a wooden Arc measurements system with a 23 m radius, a 30 m tower, and a compact range with an 18 m quiet zone. All of these structures are outdoors and support testing from UHF to mm frequencies on antenna systems mounted on large land and air vehicles. This paper describes the ranges supported by these structures (some of which were built in the late 1960’s) and the efforts made to keep these ranges current. This paper also describes an economical approach to arc range design which moves the arc instead of the vehicles. This paper discusses plans to build one of these systems outdoors at EPG within a limited budget.

Antenna Pattern Measurements of an S-Band Satellite Communications Phased Array Antenna Panel
A. Lyons,B. Thrall, M. Weiss, M.B. Davis, M. Huisjen, R. Haupt, November 2011

A spherical array designed for hemispherical coverage of satellite communications at S-band that is approximated by hexagonal and pentagonal planar panels. Ball Aerospace built a segment of a 10m diameter spherical array that has one center pentagonal panel and five surrounding hexagonal panels. This paper de­scribes our efforts at testing one large hex­agonal panel in a compact range.

Compact Range Testing of High Power Transmit Antennas
P. Kolesnikoff, November 2011

Normally, field power density is inversely proportional to distance from a radiating antenna. In a compact range, however, the reflector focuses the radiated field onto the feed. This dramatically increases the power density – similar to the sun through a magnifying glass. Naturally, if the power density gets high enough, it could set the feed area absorber on fire. In order to determine the focusing effects on the feed horn and surrounding absorber, a series of transmit tests were conducted to measure feed absorber heating with an IR camera. This paper describes the test set up, the test results, and provides an analysis of the test results with suggestions for increasing power handling at the feed.

Measurement Techniques for a Transmit/Receive Digital Phased Array
S. Bhatia,W.M. Dorsey, J. Glancy, C.B. Huber, M. Luesse, K. O'Haver, A. Sayers, J.A. Valenzi, November 2011

This paper describes test methods and challenges for performing radio frequency (RF) characterization of a phased array antenna with element-level digital beamforming using planar near-field (PNF) and compact range technologies. The characterization of a digital array requires the synchronization of measurement equipment including positioner controllers, transmitters, and receivers. All hardware and software must remain synchronized with the array clock to achieve accurate amplitude and phase samples and ensure a coherent phase front. This synchronization is achieved through handshake triggers and communication protocols that are managed through external software. The acquisition of element-level data over large PNF scans presents unique challenges in data and post-processing that precipitate the need for optimization of array architecture as well as design of processing software. Advantages of the digital array architecture include being able to generate multiple receive beams from a single near-field scan for each frequency and the ability to compare multiple calibration methods efficiently using off-array processing.

Full Wave Simulation of Compensated Compact Ranges at Lower Frequencies
A. Geise,J. Migl, J. Hartmann, H. Steiner, November 2011

In the first part of the contribution the simulation setup of compensated compact ranges is described. The Multilevel Fast Multipole Method (MLFMM) can be efficiently employed for frequencies up to C-band. In the second part of the paper the field distribution is investigated for horizontal and vertical feed antenna excitation. Diffraction effects of edge serrations and their influence on the plane wave quality are outlined. Apart from the theoretical point of view it is discussed how to deal with low frequency effects under practical considerations, e.g. moving the DUT positioner toward the main reflector might be limited. Thus the measurement performance has to be evaluated w.r.t. typical test range conditions.

Simultaneous Beam Characterization and Active RDP of a Multi-Beam Antenna
B. Rizzuto,C. Jones, P. Kolesnikoff, November 2011

The Enhanced Antenna Subsystem (EAS) is a 12 beam, receive only antenna which uses a combination of switched elements and phase delay to accomplish independent beam steering. The upper portion of the dome­shaped antenna is populated with 45 circularly polarized antenna elements in an icosahedron pattern along with 15 additional circularly polarized elements along the cylindrical skirt extension. The antenna was tested in our 35’ by 35’ by 65’ compact range. Pattern testing was accomplished by mounting the antenna to a roll positioner atop a high load tower, which was then mounted to an azimuth turntable. The range has a 20’ by 20’ reflector providing an 8’ quiet zone. Using a switching network, we simultaneously characterized 11 statically pointed beams while tracking the range source antenna with the 12th beam. Post processing of the data was performed to separate the beam data and calibrate out losses through the switching network.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31