Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
It is shown that a phase-tapered aperture may be used to produce a uniform plane wave at Fresnel zone distances. This allows one to perform antenna/RCS measurements at reduced distances relative to a far-field range, but without the illuminator complexity and cost associated with a compact range. An asymptotic expression is obtained for the Fresnel field of a circular aperture field source distribution characterized by a large quadratic phase taper. The field is shown to be equivalent to that produced by a uniform ring source and central radiator, so that the design equations for the ring source and central radiator can be applied to plane wave synthesis using a circular phase-tapered aperture. The asymptotic expression for the field as compared with a numerical evaluation obtained using aperture integration. A simple implementation of a phase-tapered aperture using a radiating source which illuminates an aperture at a distance is presented. A quiet zone field extent which is approximately 70-80% of the source aperture extent is demonstrated.
The radar scattering from a small communications antenna mounted on a large cylinder was measured at the Ohio State University ElectroScience Laboratory compact range. This paper will describe the experimental measurement techniques and the details of the analysis of the experimental.
The small (5 cm) blade/slot/cavity antenna was mounted on a 1.82 meter long cylinder of 0.61 meter diameter. The cylinder was treated with RAM on the ends to reduce the direct and interactive end scattering effects, and was mounted in the OSU compact RCS measurement range. Measurements over the 2 to 18 GHz band both with and without the antenna were made and the results subtracted during the calibration effects to further remove the end effects. We will demonstrate these techniques and evaluate their effectiveness.
ISAR imaging of both the antenna and the scattering term associated with the load on the end of the antenna transmission line will be shown. This will demonstrate that the transmission line and loan can be separately evaluated using such techniques. A time frequency distribution (TFD) analysis technique will also be demonstrated as a means of extracting various antenna resonance terms from the data.
A description of the theoretical computation of the scattering will also be given and the special aspects of this problem outlined. The theoretical RCS data will be compared to the experimental measurements of the RCS.
For an anechoic chamber design, one normally spec ifies the field quality throughout the quiet zone in terms of the ripple level requirement. The ripple in the quiet zone field is caused by the interfer ence of various stray signals with the desired plane wave. The stray signals in an anechoic chamber can come from absorber or other parts of cham ber. However, from a range performance point of view, it is more important to know the ef fects of stray signals on the measurement accu racy of an antenna radiation or target scattering pattern. Consequently, it is very critical to eval uate how the chamber stray signals will affect a given measurement. This paper addresses this is sue by simulating pattern measurements of a phase scanned array in a compact range and discuss the effects of various stray signals associated with the scattering from absorber walls and feed spillover.
J. van Norel,A.H. van Gastel, J. Neve, J.F. Coroller, V.J. Vokurka, November 1994
Present day accuracy requirements on high-performance antenna measurements are difficult to meet on any type of compact range. Numerical correction techniques can offer a good solution. An easy and effective method is the Advanced APC-technique. This method requires patterns to be measured on different locations in the test zone so that disturbances of the plane wave can be distinguished. In case of suitable distances, the "true" pattern can be derived from measured amplitude and phase data. Usually, scanning is performed in longitudinal direction. The advantage is that mutual coupling can be distinguished well, but the field ripple in this direction due to extraneous fields varies much slower than in transversal direction. Consequently, first sidelobes can be corrected more efficiently when transversal scanning is performed. Therefore, in this paper a new and flexible way of positioning is proposed depending on the location of extraneous field sources.
H.F. Schluper,H-J. Steiner, J.F. Aubin, T. Jakob, November 1994
Deutsche Aerospace is developing and testing high performance communications antennas for the INTELSAT program. A large number of antenna measurements must be performed, for two polarizations, multiple frequencies and multiple beams. To measure all parameters in a single rotation of the antenna, a highspeed instrumentation system is required. The instrumentation was upgraded using the latest technology in receivers, sources and control systems. Commercially available components were used for all components. The resulting system can perform a complex antenna measurement consisting of over four million data points within only two hours.
Test sequencing flexibility and high throughput are essential ingredients to a state-of-the-art near-field test range. This paper will discuss methods used by NSI to aid the operator through the near-field measurement process. The paper will describe NSI's expert system and customer applications of a unique test and processing sequencer developed by NSI for optimizing range measurement activities. The sequencer provides powerful control of software functions including multiplexed measurements, data processing and unattended test operations.
A method is presented to qualify a compact range measurement system for low sidelobe antenna measurements. The method uses the target zone fields (probe data) of the compact range. Using the method, one can identify the angular regions around which the measurement errors can be significant. The sidelobe levels which can be measured around these angular regions with less than a 3 dB error are also defined.
A method is presented to qualify a compact range measurement system for low sidelobe antenna measurements. The method uses the target zone fields (probe data) of the compact range. Using the method, one can identify the angular regions around which the measurement errors can be significant. The sidelobe levels which can be measured around these angular regions with less than a 3 dB error are also defined.
M.J. Coulombe,J. Waldman, R. Giles, T. Ferdinand, T. Horgan, November 1993
A 585 GHz compact range has been developed for obtaining full scale RCS measurements on scale model targets. The transceiver consists of two CW submillimeter-wave gas lasers along with two colled-InSb heterodyne mixers. Coherent detection has been implemented to maximize sensitivity and allow for a vector measurement capability. In addition, the target can be rapidly translated in range to generate a doppler modulation which is used to reject background signals during low-RCS measurements.
Although most scaling has evolved to develop non-metallic materials with scaled dielectric properties as well as validation and test program, RCS measurements are made on scaled simple and complex shapes and compared with full-scale measurements and computer predictions.
A description of the 585 GHz compact range along with measurement examples are presented in this paper.
D. Kremer,A. Newell, A. Repjar, A. Trabelsi, C. Rose, M. Pinkasy, November 1993
This paper will discuss one method of characterizing the scan plane for planar near-field measurements. The method uses a theodolite auto-collimator, a laser interferometer, an electronic level and an optical square. The data obtained using these techniques are first used to make alignment corrections to the scan plane; then new data are used to determine the best fit for the realigned scan plane. The normal to this place is referenced using a permanently placed mirror. In addition, the final data obtained can be used in probe position-correction techniques, developed for planar near-field measurements.
J.B., Jr. A. Johnson,W.S. Albritton, November 1993
The U.S.Army Redstone Technical Test Center (RTTC), Test and Evaluation Command, has developed a comprehensive antenna metrology and Radar Cross Section (RCS) evaluation facility. This facility features the compact antenna test range technique for millimeter wave measurements and the near-field scanning technique for microwave measurements.
This paper described RTTC's use of these measurement techniques, instrumentation with PC Windows based automation software, anechoic chambers, and types of tests performed. Planned future thrust areas are also discussed.
Anechoic chambers have difficulty in meeting the new basic standards for radiated emission and susceptibility test facilities that have come into operations by the new EMC directive of the European Economic Community. In this contribution a method first presented at the 1992 A.M.T.A. meeting is extended to compute the performance of anechoic chambers at the most critical lower MHz frequency range. Computational results are shown of a real semi-anechoic chamber with a sloped ceiling and a symmetrical reference chamber. The results are compared with measurements values obtained by scanning the chamber with a small field probe.
Following this, several methods for optimizing the chamber performance are proposed and evaluated in their effectiveness. The goal of this work is to achieve an accreditation of existing as well as chambers still to be built as standardized EMC test facilities in the specified frequency range.
D.A. Whelen,B.W. Ludwick, C.R. Boerman, D. Williams, R.G. Immell, November 1993
A recently completed Hughes program successfully demonstrated an airborne multi-spectral (VHF through X-Band) Synthetic Aperture Radar (SAR) measurement of the radar cross section (RCS) of an aircraft in flight, producing two-dimensional (2-D) diagnostic RCS images of the test aircraft. Ground-to-air imaging of full-scale aircraft was demonstrated by Hughes in 1990. In early 1992, a Hughes A-3 aircraft made air-to-air radar images of a test aircraft in flight. To date, Hughes has collected imagery on nine aircraft from VHF through X-Band, including nose, side and tail aspects at several elevation angles. Reference (2) describes the VHF/UHF capability of the imaging system and this paper will describe the image processing steps developed and will display S- and X-Band radar images with resolution as fine as 6 x 4 inches. The images presented in this paper are dominated by a few very large cavity-type scatterers and do not show the ultimate sensitivity and fidelity of the system. The air-to-air images do demonstrate the spectacular diagnostic utility of this technology.
This paper contrasts indoor and outdoor implementation of efforts during upgrades of VHR RCS measurement capabilities. Sites studied are two McDonnell Douglas Technologies Incorporated, Range Measurements Services facilities. Indoor. Radar Measurement Center (San Diego, CA) is a large compact range. Equipment-Harris Corporation Model 1630 Collimator System, Scientific Atlanta Model 2090 radar. Outdoor. Microwave test facility (Victorville, CA), large ground plane facility. Equipment-Steerable dipole feed dish, System Planning Corp, Mark III radar.
M.J. Coulombe,J. Waldman, R. Giles, T. Ferdinand, T. Horgan, November 1993
A 585 GHz compact range has been developed for obtaining full scale RCS measurements on scale model targets. The transceiver consists of two CW submillimeter-wave gas lasers along with two colled-InSb heterodyne mixers. Coherent detection has been implemented to maximize sensitivity and allow for a vector measurement capability. In addition, the target can be rapidly translated in range to generate a doppler modulation which is used to reject background signals during low-RCS measurements.
Although most scaling has evolved to develop non-metallic materials with scaled dielectric properties as well as validation and test program, RCS measurements are made on scaled simple and complex shapes and compared with full-scale measurements and computer predictions.
A description of the 585 GHz compact range along with measurement examples are presented in this paper.
This paper will describe the requirement, design, implementation, and performance evaluation of MMWRCS measurement subsystems to be integrated with an existing RCS measurement system in the Sikorsky Compact Range in Bridgeport, CT. The subsystems will operate at V-band (58-62 GHz) and W-band (92-98 GHz). The requirements to test at V-band and W-band is driven by limitations of quiet zone physical volume. The Harris model 1606 reflector system produces a 6 foot diameter zone of virtual uniform amplitude and phase. Therefore scale models are fabricated for test. This translates to approximately 1/6 scale of contemporary Sikorsky Helicopter designs. Testing at 60 and 95 GHz will provide accurate simulated full scale RCS data at X and Ku-bands.
J.P. McKay,L.U. Brown, T.J. DeVincente, Y. Rahmat-Samii, November 1993
The utility of array feeds for compact range reflector antenna applications is discussed. The goal is to feed a circular-aperture, offset parabolic reflector such that the central illumination is uniform and the rim illumination is zero. The illumination taper results in significant reduction of edge-diffracted fields without the use of reflector edge treatment. A methodology for designing an array feed requiring only two real excitation coefficients is outlined. A simple and cost effective array implementation is presented. The array beam forming network is realized as a radial transmission line which is excited at the center from a coaxial transmission line, and terminated at the perimeter with absorber and conductive tape. Energy is probe-coupled from the radial line to balun-fed dipole array elements. The required element amplitude excitation is obtained by adjusting the probe insertion depth, and the required element phase excitation is supplied by the traveling radial wave. Construction and test of an X-band array are summarized. The measured array patterns display a flat-topped beam with a deep null at angles corresponding to the reflector rim.
Lockheed has recently completed the construction of a Large Compact Range (LCR) for antenna and RCS measurements. The dimensions of the facility are 60' (h) x 100' (w) x 120' (l) with a 20' x 20' cylindrical quiet zone and operational capabilities from 0.1 to 18.0 GHz.
The requirement to measure low RCS levels in a room which is smaller that the desired has resulted in a unique system design. Elements of this design include a feed pit, a feed hood, and a rolled edge reflector; special absorber layouts to minimize background scattering, a high performance instrumentation radar, fast ring down feed antennas, and a unique string suspension and positioning system.
This paper presents the various sub-systems that make up the LCR along with chamber validation methods and preliminary performance data. The subsystems listed in this paper are LCR's: Reflector, radar system, feed antennas, feed positioner, absorber, target handling equipment, and string positioning system.
Initial design requirements are listed for some sub-systems along with range characterization data such as un-subtracted clutter levels, background subtraction performance, and theory vs. measured data for some simple conical shapes.
J.H. Pape,C.L., Jr. Devor, D. Smith, J. Smiddie, November 1993
The Compact Range is becoming the method of choice for indoor testing of many types and sizes of antennas. Implementation of a compact range requires a suitable parent building structure in which to house the chamber. The chamber is located within the parent building and the compact range is then installed within the chamber. In some cases an existing building may not be available for the range and it may be difficult to acquire a new building due to local or proprietary requirements. Once a building has been located, many problems still exist with coordination installation of the chamber and compact range within this building. Overcoming these problems can be both time consuming and inefficient in terms of cost.
This paper describes a Compact Antenna Range conceived and designed to be totally self contained and truck transportable. The compact range consists of a complete anechoic chamber facility with self contained electrical, lighting, HVAC and fire protection systems. The compact range provides a 3 foot test zone over the 5.8 to 94 GHz frequency range. Once completed and tested at the factory, the facility is transported and set in place at the user site.
Details are presented which describe the structural requirements of the chamber, the RF performance of the completed facility, and the transport and installation process. The integrated test positioner and an automatic feed changing mechanism are also described.
This paper briefly reviews existing compact range performance characterization methods showing the limitations of each technique and the need for an accepted and well understood technique which provides efficient and accurate characterization of compact range measurement accuracy. A technique known as the transverse pattern comparison method is then described which has been practiced by the author and some range users for the past several years. The method is related to the well known longitudinal pattern comparison method, however, comparisons are conducted in the transverse planes where the required span of aperture displacement is much smaller and does not exceed the dimensions of the quiet zone. This method provides several advantages for characterizing compact range performance as well as enables range users to improve achievable measurement accuracies by eliminating the impact of extraneous signal errors in the quiet zone.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.