AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Compact Range

Evaluation of compact ranges for low sidelobe antenna measurements
I.J. Gupta,W.D. Burnside, November 1993

A method is presented to qualify a compact range measurement system for low sidelobe antenna measurements. The method uses the target zone fields (probe data) of the compact range. Using the method, one can identify the angular regions around which the measurement errors can be significant. The sidelobe levels which can be measured around these angular regions with less than a 3 dB error are also defined.

GHz compact range for scale model RCS measurements, A
M.J. Coulombe,J. Waldman, R. Giles, T. Ferdinand, T. Horgan, November 1993

A 585 GHz compact range has been developed for obtaining full scale RCS measurements on scale model targets. The transceiver consists of two CW submillimeter-wave gas lasers along with two colled-InSb heterodyne mixers. Coherent detection has been implemented to maximize sensitivity and allow for a vector measurement capability. In addition, the target can be rapidly translated in range to generate a doppler modulation which is used to reject background signals during low-RCS measurements. Although most scaling has evolved to develop non-metallic materials with scaled dielectric properties as well as validation and test program, RCS measurements are made on scaled simple and complex shapes and compared with full-scale measurements and computer predictions. A description of the 585 GHz compact range along with measurement examples are presented in this paper.

Planar near-field alignment
D. Kremer,A. Newell, A. Repjar, A. Trabelsi, C. Rose, M. Pinkasy, November 1993

This paper will discuss one method of characterizing the scan plane for planar near-field measurements. The method uses a theodolite auto-collimator, a laser interferometer, an electronic level and an optical square. The data obtained using these techniques are first used to make alignment corrections to the scan plane; then new data are used to determine the best fit for the realigned scan plane. The normal to this place is referenced using a permanently placed mirror. In addition, the final data obtained can be used in probe position-correction techniques, developed for planar near-field measurements.

New antenna metrology and radar cross section facility at the U.S. Army Redstone Technical Test Center
J.B., Jr. A. Johnson,W.S. Albritton, November 1993

The U.S.Army Redstone Technical Test Center (RTTC), Test and Evaluation Command, has developed a comprehensive antenna metrology and Radar Cross Section (RCS) evaluation facility. This facility features the compact antenna test range technique for millimeter wave measurements and the near-field scanning technique for microwave measurements. This paper described RTTC's use of these measurement techniques, instrumentation with PC Windows based automation software, anechoic chambers, and types of tests performed. Planned future thrust areas are also discussed.

Prediction and evaluation of anechoic chamber performance
C. Bornkessel,E. Heidrich, November 1993

Anechoic chambers have difficulty in meeting the new basic standards for radiated emission and susceptibility test facilities that have come into operations by the new EMC directive of the European Economic Community. In this contribution a method first presented at the 1992 A.M.T.A. meeting is extended to compute the performance of anechoic chambers at the most critical lower MHz frequency range. Computational results are shown of a real semi-anechoic chamber with a sloped ceiling and a symmetrical reference chamber. The results are compared with measurements values obtained by scanning the chamber with a small field probe. Following this, several methods for optimizing the chamber performance are proposed and evaluated in their effectiveness. The goal of this work is to achieve an accreditation of existing as well as chambers still to be built as standardized EMC test facilities in the specified frequency range.

High resolution SAR/ISAR air-to-air RCS imaging
D.A. Whelen,B.W. Ludwick, C.R. Boerman, D. Williams, R.G. Immell, November 1993

A recently completed Hughes program successfully demonstrated an airborne multi-spectral (VHF through X-Band) Synthetic Aperture Radar (SAR) measurement of the radar cross section (RCS) of an aircraft in flight, producing two-dimensional (2-D) diagnostic RCS images of the test aircraft. Ground-to-air imaging of full-scale aircraft was demonstrated by Hughes in 1990. In early 1992, a Hughes A-3 aircraft made air-to-air radar images of a test aircraft in flight. To date, Hughes has collected imagery on nine aircraft from VHF through X-Band, including nose, side and tail aspects at several elevation angles. Reference (2) describes the VHF/UHF capability of the imaging system and this paper will describe the image processing steps developed and will display S- and X-Band radar images with resolution as fine as 6 x 4 inches. The images presented in this paper are dominated by a few very large cavity-type scatterers and do not show the ultimate sensitivity and fidelity of the system. The air-to-air images do demonstrate the spectacular diagnostic utility of this technology.

Contrast of VHF RCS measurement challenges indoor/outdoor, A
D. Craig,J. Matis, November 1993

This paper contrasts indoor and outdoor implementation of efforts during upgrades of VHR RCS measurement capabilities. Sites studied are two McDonnell Douglas Technologies Incorporated, Range Measurements Services facilities. Indoor. Radar Measurement Center (San Diego, CA) is a large compact range. Equipment-Harris Corporation Model 1630 Collimator System, Scientific Atlanta Model 2090 radar. Outdoor. Microwave test facility (Victorville, CA), large ground plane facility. Equipment-Steerable dipole feed dish, System Planning Corp, Mark III radar.

GHz compact range for scale model RCS measurements, A
M.J. Coulombe,J. Waldman, R. Giles, T. Ferdinand, T. Horgan, November 1993

A 585 GHz compact range has been developed for obtaining full scale RCS measurements on scale model targets. The transceiver consists of two CW submillimeter-wave gas lasers along with two colled-InSb heterodyne mixers. Coherent detection has been implemented to maximize sensitivity and allow for a vector measurement capability. In addition, the target can be rapidly translated in range to generate a doppler modulation which is used to reject background signals during low-RCS measurements. Although most scaling has evolved to develop non-metallic materials with scaled dielectric properties as well as validation and test program, RCS measurements are made on scaled simple and complex shapes and compared with full-scale measurements and computer predictions. A description of the 585 GHz compact range along with measurement examples are presented in this paper.

V-band and W-band upgrade for a compact RCS range
S. Yadre, November 1993

This paper will describe the requirement, design, implementation, and performance evaluation of MMWRCS measurement subsystems to be integrated with an existing RCS measurement system in the Sikorsky Compact Range in Bridgeport, CT. The subsystems will operate at V-band (58-62 GHz) and W-band (92-98 GHz). The requirements to test at V-band and W-band is driven by limitations of quiet zone physical volume. The Harris model 1606 reflector system produces a 6 foot diameter zone of virtual uniform amplitude and phase. Therefore scale models are fabricated for test. This translates to approximately 1/6 scale of contemporary Sikorsky Helicopter designs. Testing at 60 and 95 GHz will provide accurate simulated full scale RCS data at X and Ku-bands.

X-band array for feeding a compact range reflector, An
J.P. McKay,L.U. Brown, T.J. DeVincente, Y. Rahmat-Samii, November 1993

The utility of array feeds for compact range reflector antenna applications is discussed. The goal is to feed a circular-aperture, offset parabolic reflector such that the central illumination is uniform and the rim illumination is zero. The illumination taper results in significant reduction of edge-diffracted fields without the use of reflector edge treatment. A methodology for designing an array feed requiring only two real excitation coefficients is outlined. A simple and cost effective array implementation is presented. The array beam forming network is realized as a radial transmission line which is excited at the center from a coaxial transmission line, and terminated at the perimeter with absorber and conductive tape. Energy is probe-coupled from the radial line to balun-fed dipole array elements. The required element amplitude excitation is obtained by adjusting the probe insertion depth, and the required element phase excitation is supplied by the traveling radial wave. Construction and test of an X-band array are summarized. The measured array patterns display a flat-topped beam with a deep null at angles corresponding to the reflector rim.

Lockheed's large compact range
A.J. Kamis, November 1993

Lockheed has recently completed the construction of a Large Compact Range (LCR) for antenna and RCS measurements. The dimensions of the facility are 60' (h) x 100' (w) x 120' (l) with a 20' x 20' cylindrical quiet zone and operational capabilities from 0.1 to 18.0 GHz. The requirement to measure low RCS levels in a room which is smaller that the desired has resulted in a unique system design. Elements of this design include a feed pit, a feed hood, and a rolled edge reflector; special absorber layouts to minimize background scattering, a high performance instrumentation radar, fast ring down feed antennas, and a unique string suspension and positioning system. This paper presents the various sub-systems that make up the LCR along with chamber validation methods and preliminary performance data. The subsystems listed in this paper are LCR's: Reflector, radar system, feed antennas, feed positioner, absorber, target handling equipment, and string positioning system. Initial design requirements are listed for some sub-systems along with range characterization data such as un-subtracted clutter levels, background subtraction performance, and theory vs. measured data for some simple conical shapes.

Transportable compact antenna range, A
J.H. Pape,C.L., Jr. Devor, D. Smith, J. Smiddie, November 1993

The Compact Range is becoming the method of choice for indoor testing of many types and sizes of antennas. Implementation of a compact range requires a suitable parent building structure in which to house the chamber. The chamber is located within the parent building and the compact range is then installed within the chamber. In some cases an existing building may not be available for the range and it may be difficult to acquire a new building due to local or proprietary requirements. Once a building has been located, many problems still exist with coordination installation of the chamber and compact range within this building. Overcoming these problems can be both time consuming and inefficient in terms of cost. This paper describes a Compact Antenna Range conceived and designed to be totally self contained and truck transportable. The compact range consists of a complete anechoic chamber facility with self contained electrical, lighting, HVAC and fire protection systems. The compact range provides a 3 foot test zone over the 5.8 to 94 GHz frequency range. Once completed and tested at the factory, the facility is transported and set in place at the user site. Details are presented which describe the structural requirements of the chamber, the RF performance of the completed facility, and the transport and installation process. The integrated test positioner and an automatic feed changing mechanism are also described.

Transverse pattern comparison method for characterizing antenna and RCS compact ranges, The
S. Brumley, November 1993

This paper briefly reviews existing compact range performance characterization methods showing the limitations of each technique and the need for an accepted and well understood technique which provides efficient and accurate characterization of compact range measurement accuracy. A technique known as the transverse pattern comparison method is then described which has been practiced by the author and some range users for the past several years. The method is related to the well known longitudinal pattern comparison method, however, comparisons are conducted in the transverse planes where the required span of aperture displacement is much smaller and does not exceed the dimensions of the quiet zone. This method provides several advantages for characterizing compact range performance as well as enables range users to improve achievable measurement accuracies by eliminating the impact of extraneous signal errors in the quiet zone.

Design and measurements of multi-purpose compact range antenna (CRA)
M. Winebrand,E. Katz, Y. Rosner, November 1993

Traditional Compact Range Antenna (CRA) applications are related to Antenna Pattern and RCS measurements. For these purposes, as a rule, CRA are installed within or outside of an anechoic chamber as stationary equipment. However, for some modern applications, such as Electronic Warfare development, radar tracking system testing, indoor RF environment simulation and others, where dynamic and pointing properties of an AUT are to be tested, the mobile and multi-beam CRA is of great importance, since it provides the designer with powerful simulation and testing capabilities. Such a CRA has been designed, built and tested at ORBIT ADVANCED TECHNOLOGIES, LTD. The design trade-offs, CRA analysis, test set-up and results are discussed in the presented paper.

Plane wave synthesis at Fresnel zone distances using ring arrays
J.P. McKay,Y. Rahmat-Samii, November 1993

A technique is presented for synthesizing a uniform plane wave at Fresnel zone distances. The method attempts to bridge the gap between compact range techniques and far field techniques, in the sense that one may potentially perform antenna or scattering measurements when a compact range reflector is electrically too small and the available far field range length is also too small. Similar to a far-field range, the distance to the test zone region generally varies with the side D of the test item and the frequency of operation being proportional to D2/X. Similar to a compact range, the test zone is confined to a localized region, and the quality of the test zone field does not improve with distance as it does for a far field range. The method is implemented by compensating the phase taper associated with a single radiator by employing a uniformly excited, concentric ring array. The quality and transverse extent of the test zone fields may be adjusted by varying the relative amplitude and phase excitation of the array. Syntheses of a test zone region characterized by a 1 dB amplitude ripple over 70% of the disk defined by the projected ring aperture is demonstrated.

Experimental range facility for RCS measurement and imaging research
J. Burns,D., Jr. Kletzli, G. Fliss, November 1993

A small compact range measurement facility has been installed at the Environmental Research Institute of Michigan (ERIM) for research aimed at improving RCS measurement and radar imaging techniques. This paper describes the facility, which is referred to as the Experimental Range Facility (ERF). The ERF has two instrumentation radars; a Flam & Russell FR959 gated CW radar and a Hughes MMS-300 pulsed radar. The radars are connected to a suite of workstations, which support a variety of internally and externally developed radar imaging and data exploitation software. The ERF is also equipped with sophisticated target positioning control and sensing equipment.

Lockheed Sanders, Inc., antenna measurement facility.
E.A. Urbanik,D.G. LaRochelle, November 1993

Lockheed Sanders, Inc., has constructed a state-of-the-art electromagnetic measurement system. Cost considerations dictated the use of existing facilities and space, We took advantage of the lessons learned from the Lockheed Advanced Development Company's (LADC) Rye Canyon, California Facility [1]. Lockheed Sanders, Inc. now has a complete indoor measurement capability from VHF to MMW. Lockheed Sanders, Inc. needed a facility capable of making measurements over a broad range of frequencies. The system consists of a tapered chamber and a compact range. The system consists of a tapered chamber and a compact range. The tapered chamber has a measurement area of 28' x 28' x 34'. This range is capable of antenna and RCS measurements from .1 to 2 GHz. The compact range is designed for 2 to 40 GHz. Using a Scientific Atlanta, Inc. reflector scaled from the Rye Canyon reflector, a 6' x 6' quiet zone is possible. Feeds consist of a feed cluster aligned for phase and limiting parallax and horn cross-talk. Both chambers use the Flam and Russell 959 measurement system. This paper will discuss the chambers and their operation. The paper will close with a demonstration with measurements on standard, complex targets.

Concept design of a cylindrical outdoor near field test range for high precision RF measurements
H-J. Steiner,T. Fritzel, November 1993

DASA's high precision Compact Range Program, which already was a breakthrough in new dimensions of RF measurements standards, will not be completed by a revolutionary new and one of the world's most unique types of Cylindrical Outdoor Near-Field Test Range. The most striking component of this new type facility will be its dominating fully air-conditioned, up to 50 m high diamond shaped concrete tower which is the integral part of the vertical probe scanner subsystem. Although this test range is located outdoor, it allows extremely precise characterization of all typical parameters for state of the art antenna systems.

Antenna pattern measurement errors evaluation at the INTA compensated compact range
P.L. Garcia-Muller,J-L. Cano, November 1993

The plane wave quality of a compact range (CR) is usually specified in terms of the crosspolar level and the magnitude and phase ripple in the test zone. The way these deviations from the ideal plane wave affect the measurement of different antenna types can be treated by the application of the reciprocity principle between the transmitting and receiving antenna in a measurement set-up. By the application of the sampling theorem, it is found that the measured antenna pattern can be expressed as a summation of the plane wave spectrum components of the field at the test zone weighted by the true radiation pattern of the antenna under test (AUT) evaluated at the CR plane wave directions in the rotated coordinate system of the AUT. The inverse procedure can be used to extract the CR plane wave information (and therefore the CR field at the test zone by means of the Fourier series) from the measurement of a standard antenna with a known radiation pattern.

Scattering by a simplified ship deckhouse model
B. Badipour,M.,J. Coulombe, T. Ferdinand, W. Wasylkiwskyj, November 1993

To gain greater insight into the design of surface ships with reduced radar cross-section characteristics, a structure resembling a ship deckhouse was physically modeled and measured. The structure was represented as a truncated pyramid. Four scaled pyramids were fabricated, all identical except for the radii of the four vertical (slanted) edges. The pyramids were measured at the University of Massachusetts, Lowell Research Foundation, submillimeter laser compact range. Measurements were made a scaled X-band using a laser-based system that operates at 585 GHz with the pyramids scaled at a ratio of 1:58.5. These shaper were measured at 0.75 degrees depression angles on a smooth metal ground plane at both HH and VV polarizations. The goal of this study was to determine if small changes in the radius of the curvature of the slanted edges could significantly affect the radar cross-section of the pyramid. In this paper the results of measurements of the pyramids will be presented. The data are compared with computer code predictions and the differences are discussed.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30