AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Compact Range

Parametric signal history editing techniques for removal of additive support contamination in narrowband RCS measurements
J. Burns (Environmental Institute of Michigan),S.R. DeGraaf (Electronic Sensors and Systems Division), November 1996

ERIM has developed techniques, based on parametric spectral estimators, for removing additive target support contamination from narrowband RCS measurements [1]. These techniques allow target and support returns to be extracted from frequency sweep data with much greater accuracy and resolution than that afforded by conventional Fourier techniques. These algorithms have recently been enhanced to incorporate scattering mechanism frequency dependence in the underlying signal model. Specifically, damped exponential and power-of-frequency sweep data with much greater accuracy and resolution than that afforded by conventional Fourier techniques. These algorithms have recently been enhanced to incorporate scattering mechanism frequency dependence in the underlying signal model. Specifically, damped exponential and power-of-frequency signal models have been used. The modification substantially improves algorithm performance in measurement situations where there is small absolute bandwidth, but relatively large fractional bandwidth, which can lead to appreciable variation in scattering mechanism amplitude. The paper will demonstrate the technique’s ability to remove target support contamination using numerical simulations and compact range measurements of canonical targets mounted on pylon supports. It will be shown that the algorithm can remove the additive pylon contamination even for situations where the pylon return dominates the target return and cannot be resolved from the target in conventional Fourier range profiles.

Compact range antenna measurement error model
M. Boumans (Dornier Satellitensysteme GmbH), November 1996

A compact range antenna measurement error model is presented which shows that the ripple in the quiet zone can only be caused by stray radiation from the edges of the reflector, presuming a perfectly shaped (serrated) reflector. This is proven by defining an equivalent system which gives significant intuitive insight in the behavior of a compact range. For a simple example this model is shown to be consistent with PO. The model intuitively explans many antenna measurement accuracy observations made in a compact range without the need for extensive knowledge of antenna or diffraction theory. These observations include the relation between quiet zone ripple characteristics and antenna measurement accuracy, especially for boresight, narrow angle and wide angle measurements. It also explains why new correction techniques like AAPC work so well in spite of their presumable simplified modeling.

The Use of pattern comparison methods for satellite antenna testing
J. van Norel (Dornier Satellitensysteme GmbH),J. Habersack (Dornier Satellitensysteme GmbH), M. Boumans (Dornier Satellitensysteme GmbH), November 1996

Nowadays, the standard facility for accurate satellite antenna testing is the Compensated Compact Range (CCR). In order to increase measurement accuracy several techniques can be applied, which are based on antenna pattern comparison. The theory of these techniques together with experimental results have been described in several papers in the past [1][2][3]. This paper presents how pattern comparison techniques are applied for space programs and is another step to official qualification of the Advanced Antenna Pattern Comparison (AAPC) method at Dornier Satellitensysteme (DSS).

Cross polarization measurement accuracy improvement on a single reflector compact range
D. Cook (Scientific-Atlanta, Inc.),J.H. Cook (Scientific-Atlanta, Inc.), R. Kaffezakis (Scientific-Atlanta, Inc.), November 1996

Scientific-Atlanta has developed a new algorithm for obtaining high accuracy cross-polarization measurements from prime focus, single reflector, compact ranges. The algorithm reduced cross-polarization extraneous signals to levels that rival or exceed much more expensive dual reflector systems, but with the associated cost and simplicity of a single reflector system. This paper provides an overview of the new algorithm. It explains the limitations on conventional polarization measurements in single reflector systems and the methods for overcoming these limitations without error correction for some antennas. A method for determining if error correction is needed for a particular antenna is reviewed and the fundamentals of the error correction algorithm are explained. Preliminary test results are provided.

Near-field/far-field transformation
E. Lebreton,J.R. Levrel, November 1995

RCS data measured under near-field conditions is corrected to the far-field. The algorithm uses the HUYGEN's principle approach. The processing technique is describes and validates using anechoic chamber data and simulations taken on flat plate target at a distance from the radar R << 2D2/A, where D is the target cross range extend and A the wavelength. Good agreement with the theoretically predicted far-field RCS patterns is obtained.

Design and testing of an adaptive array for analog cellular
S.W. Ellingson,J. Kennedy, November 1995

This paper describes an adaptive array that was designed to improve the carrier-to-interference ratio (C/I) delivered to base station radios by 6 dB in U.S. 800 MHz analog cellular networks. The C/I performance of this kind of system is difficult to verify, because it cannot be characterized in terms of traditional antenna specifications such as beamwidth and directivity. This paper describes a simple C/I measurement strategy in which the antenna under test and a collocated reference antenna are placed into simultaneous operation in an actual cellular network. Relative C/I performance can then be deduced from a statistical analysis of the antenna outputs. This method is particularly well-suited to software radio­ based systems, because no special test equipment is required to gather the necessary data.

Discrete implementation of an image-based algorithm for extrapolation of radar cross-section (RCS) from near-field measurements
I. LaHaie,E. LeBaron, November 1995

ERIM is currently investigating several near-field to far-field transfonnations (NFFFfs) for predicting the far-field RCS of targets from monostatic near-field measurements. Each of the techniques uses approximate­ tions and/or supporting information to overcome the need for the bistatic near-field data which is required to rigorously transfonn a target's scattered field from the near zone to the far zone. Our focus has been on spheri­ cal near-field scanning, since this type of collection geometry is most compatible with existing RCS ranges. One particular NFFFT is based on the reflectivity approximation commonly used in ISAR imaging to model the target scattering. This image-based NFFFT is the most computationally efficient technique under con­ sideration, because, despite its theoretical underpinnings, it does not explicitly require image fonnation as part of its implementation. This paper presents an efficient discrete implementation of the image-based NFFFT, along with numerically-simulated examples of its perfonnance. The advantages and limitations of the technique will be discussed. A simplified version which applies to high aspect ratio (length-to-height) targets and requires only a single great circle (waterline) data in the near field is also summarized.

Interferometric techniques for discriminating multipath in ground to ground radar diagnostics with minimal constraints on collection geometry
L. Cech,C. Clarke, G. Fliss, J. Steinbacher, T. Coveyou, T. Kornbau, W. Nagy, November 1995

Due to inherent cost, safety and logistical advan­ tages over dynamic measurements, Ground-to-Ground (G2G, aircraft and radar on tarmac) diagnostic radar measurements may be the preferred method of assessing aircraft RCS for signature maintenance. However, some challenging complications can occur when interpreting SAR imagery from these systems. For example, the effect of ground induced multi-path often results in the measurement of a significantly different image based RCS than would have been obtained by a comparable Ground-to-Air (G2A) or Air-to-Air (A2A) system. Although conventional 2-D SAR images are useful in determining the physical source (down-range/cross­ range) of scatterers, it is difficult at best to deduce whether an image pixel is a result of direct (desired) or ground induced multi-path (undesired) scattering. ERIM and MRC recently completed an experiment testing the utility of collecting and processing interfero­ metric (2-antenna) SAR radar data. This effort produced not only high resolution SAR imagery, but also a com­ panion data set, derived from interferometric phase, which helps to isolate the source (direct or multi-path) of all scattering within the SAR image. Additionally, the data set gives a measure of the physical height of direct scatterers on the target. This paper outlines the experiment performed on a RCS enhanced F-4 aircraft using a van mounted radar. Conventional high resolution imagery (down-range/ cross-range/intensity) will be shown along with down­ range/height/intensity and cross-range/height/intensity images. The paper will also describe the processing pro­ cedure and present analysis on the interferometric results. The unique motion compensation processing technique combining prominent point and motion mea­ surement instrumentation data, eliminates the need for a tightly controlled collection path (e.g. bulky rail sys­ tems). This allows data to be collected with the van driven somewhat arbitrarily around the target with side mounted antennas taking measurements at desired aspects.

Image editing and feature extraction for BIG EAR triangular plate RCS measurements
E. LeBaron,C. Roussi, K. Quinlan, S. Li-Fliss, November 1995

Image editing, a post measurement data processing technique, is an established method for the identification and reduction of non-target measurement artifacts like the target support system. The Environmental Research Institute of Michigan has applied this technique to data collected at the OSU "BIG EAR" VHF-UHF wideband compact range in order to remove or reduce target sup­ port interference and to extract selected target feature contributions to the RCS. In this paper, the application of the method to some BIG EAR measurements data is described and examples are shown which demonstrate the improvement in data quality and usability afforded by support contamination reduction and feature extraction techniques.

ISAR RCS editing via modern spectral estimation methods
S.R. DeGraaf,E. LeBaron, G. Fliss, K. Quinlan, S. Li-Fliss, November 1995

ERIM is investigating the use of modem spectral esti­ mation techniques for extracting (editing) desired or undesired contributions to RCS and ISAR measurements in two ways. The first approach involves using parametric spectral estimators to perform frequency sweep range compression and signal history editing, while the second involves using the associated stabilized linear prediction filters to extrapolate sweep data and perform "enhanced resolution" Fourier image editing. This paper summarizes our editing algorithms and illustrates RCS editing results using measurements of a conesphere target contaminated by a metal rod and foam support. The reconstructed "clean" conesphere measurements are compared quantitatively against numerically simulated ground truth. Editing was performed using three bandwidths at two center fre­ quencies to provide insight into the impacts of nominal resolution and scatterer amplitude variation with fre­ quency on editing efficacy, and to assess the degree to which superresolution algorithms can offset reduced nominal resolution.

Super-resolution for SAR/ISAR RCS measurement using spatially variant apodization
H. Stankwitz,M. Kosek, November 1995

Spatially Variant Apodization (SVA) [l] is nonlinear image domain algorithm which effectively eliminates finite-aperture sidelobes from SAR/ISAR imagery without degrading mainlobe resolution, unlike traditional methods of sidelobe suppression (e.g. Taylor weighting). Dezellum et. al. [2] demonstrated at the 16th AMTA symposium the benefits of SVA for improving RCS analysis of ISAR data. The purpose of this paper is to show that robust super-resolution via bandwidth extrapolation can be obtained in a relatively simple, straightforward manner using SVA, providing further improvement in RCS measurements from SAR/ISAR data. This new super-resolution algorithm (called Super-SVA) can extrapolate the signal bandwidth for an arbitrary set of scatterers by a factor of two or more, with a commensurate improvement in resolution. Super-resolution techniques have been traditionally limited to problems where a-priori knowledge is available and/or the scene content is suitably constrained. Using Super-SVA, no a-priori knowledge of scene content is required. Super-SVA exploits the fact that SVA applied to an image results in finite image-domain support on the scale of the system resolution for an arbitrary set of complex scatterers. Extrapolation of the frequency-domain signal data is then simply a matter of applying frequency-domain inverse amplitude weighting. The fidelity of the deconvolution process can be improved by embedding the original signal data in the extrapolated data and performing further iterations of the process.

Triband radome measurement system: installation and testing results, A
V. Jory,G.W. Pearson, J.R. Jones, L.L. Oh, S.J. Manning, T.L. Norin, V. Farr, November 1995

In an earlier paper ("System Engineering for a Radome Test System," John R. Jones, et al, AMTA, October 1994) the system level design of a compact range enhancement for the testing of the Triband Radome was presented. This paper will discuss the installation and testing of the radome measurement system in the compact range. The purpose of the radome measurement system is to determine (within close tolerances) boresight shift, transmission loss, antenna pattern changes and polarization effects caused by the radome. Unique features include novel coordinate transformation and correction by means of a laser autocollimator and data reduction algorithms. Also featured is the tracking subsystem which consists of a specially designed two-axis track pedestal, an autotrack controller, and three five-horn compact range feed arrays operating at X, K, and Q-bands. The performance of the triband radome measurement system in the compact range setting will be presented.

Measurements of structural deformations of large reflector antennas
M.J. Brenner, November 1995

Optical surveying techniques with theodolites have been utilized for many years for static measurements of reflector antennas. This paper reports on updated optical surveying systems used to measure the accuracies and structural deformations of reflector antennas. Deformations of large Cassegrain tracking antennas during elevation rotation and a fixed, billboard-style compact range reflector over time are discussed. A simple surveying method is shown for the integrated measurement of Cassegrain antennas (both primary and secondary reflectors) from near the primary vertex. Other topics covered include accurate prediction of interpolated gravity deformations of rotating reflectors based on a small measurement sample, and a method for taking differences between measurements. The use of EDM (Electronic Distance Measurement) theodolites as well as angle-only devices is described, along with software which manages both the measurement and data-reduction systems.

Multi-purpose large compact range for antenna, spacecraft payload, and RCS measurements, A
J.R. Jones,C.L. Allen, E. Hart, J-L. Cano, Garcia-Muller., November 1995

Compact ranges have found wide application for antenna measurements, RCS measurements, and, most recently, for spacecraft payload measurements. Each of these ap­ plications requires certain special features of the range optics, positioning systems, electronics, and software. The system design of a compact range measurement sys­ tem for making all these types of measurements presents a number of challenges. This paper will discuss the system aspects of the design of a multi-purpose compact range facility. Items of inter­ est include the RF electronics design, the positioning sys­ tem design, the optimization of the reflector and feeds and the specialized software design.

Frequency dependent scattering effects on Fourier domain imaging of ultra-wideband data
G. Fliss,S. Li-Fliss, November 1995

Forming radar images from large fractional band­width data can often lead to unusual artifacts or resolutions degraded from "expected" theoretical point-target values. The frequency dependencies of typical scatter­ ing mechanisms, such as diffractions, surface waves and speculars, can be significant over processing apertures when data are collected using large fractional bandwidth measurement systems. For example, it is well known that resonant scatterers exhibit blurring in the down­range direction of an image. Other scattering mechanisms have linear or quadratic amplitude dependencies which can also alter the impulse response from that of an ideal point scatterer. This paper will first provide a brief description of the frequency dependencies of various scattering mechanisms. The paper will then describe the corresponding effects seen in the impulse response, primarily in the range profile domain. Impulse response plots will be compared for data with large and small fractional band­widths. Lastly, the effects of frequency dependent scattering on the impulse response will be shown using images generated from data collected in indoor compact ranges.

Image editing and feature extraction for BIG EAR triangular plate RCS measurements
E. LeBaron,C. Roussi, K. Quinlan, S. Li-Fliss, November 1995

Image editing, a post measurement data processing technique, is an established method for the identification and reduction of non-target measurement artifacts like the target support system. The Environmental Research Institute of Michigan has applied this technique to data collected at the OSU "BIG EAR" VHF-UHF wideband compact range in order to remove or reduce target sup­ port interference and to extract selected target feature contributions to the RCS. In this paper, the application of the method to some BIG EAR measurements data is described and examples are shown which demonstrate the improvement in data quality and usability afforded by support contamination reduction and feature extraction techniques.

Triband radome measurement system: installation and testing results, A
V. Jory,G.W. Pearson, J.R. Jones, L.L. Oh, S.J. Manning, T.L. Norin, V. Farr, November 1995

In an earlier paper ("System Engineering for a Radome Test System," John R. Jones, et al, AMTA, October 1994) the system level design of a compact range enhancement for the testing of the Triband Radome was presented. This paper will discuss the installation and testing of the radome measurement system in the compact range. The purpose of the radome measurement system is to determine (within close tolerances) boresight shift, transmission loss, antenna pattern changes and polarization effects caused by the radome. Unique features include novel coordinate transformation and correction by means of a laser autocollimator and data reduction algorithms. Also featured is the tracking subsystem which consists of a specially designed two-axis track pedestal, an autotrack controller, and three five-horn compact range feed arrays operating at X, K, and Q-bands. The performance of the triband radome measurement system in the compact range setting will be presented.

Near-field/far-field phase retrieval measurements of a prototype of the AMSU-B space-borne radiometer antenna at 94 GHz
C.A.E. Rizzo,A.P. Anderson, G. Junkin, November 1995

Far-field patterns obtained from planar near-field measurements of a prototype of the AMSU-B radiometer antenna by phase retrieval at 94 GHz are presented in this paper. Comparison with results from a compact range facility show good agreement within the main beam A modified algorithm takes into account any misalignments of the two intensity data sets so that the RMS near-field error metric comparing retrieved and measured values converges to < -30 dB. Phase retrieval is revealing itself as a useful technique to be applied to electrically large antennas at frequencies extending into the millimetre and sub­ millimetre bands.

Intelsat VIII antenna measurements
M. Boumans,J. Habersack, L. Jensen, November 1995

Daimler-Benz Aerospace AG (Dasa) in Munich, Germany designed, developed, build and tested most of the INTELSAT VIII antennas. RF test requirements and results are presented for the Hemi/Zone antennas. These tests cover the Beam Forming Networks (BFN), the feed array in the cylindrical near field facility at ambient temperature and in a temperature range from -61 to +85 deg centigrade, and finally the complete antenna sub­ system, without and with satellite mock-up, in the large Compensated Compact Range. Dasa and TICRA software was used to calculate the far field results from the measured BFN coefficients and from the feed array results measured in the near field facility. Also alignment aspects are considered.

Convenient, multi-platform, boresight mounting scheme for compact range, A
M.H. Sewell,H.L. Tsao, J.P., Jr. Walker, M.J. Mullaney, R.W. Currey, T.L. Warnock, November 1995

Accurate mechanical-to-electrical axis alignment (boresighting), gain, and pattern testing of radar antennae requires specialized tooling/fixturing. This requirement is often taken for granted and seldom discussed in the EE community. Particularly in a production environment, where rapid change of test configurations to accommodate multiple radar platforms are required, a convenient mounting scheme is mandatory. This paper describes and illustrates a method implemented at the Warner Robins Air Logistics Center to satisfy this demand. Drawings and/or photos of a three-point Universal Adapter fixture and several UUT Specific radar mounting fixtures are discussed. The paper discusses tolerances, materials, manufacturing processes, alignment, and antenna boresight methodologies.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30