AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Compact Range

Resistive card edge treatment performance on a Gregorian compact range subreflector
E. Vedeler, November 1995

NASA Langley Research Center built a compact range facility in 1990 with a dual rese,arch role. In addition to meeting measurement needs of the Electromagnetics Research Branch, the facility has been a test bed for compact range technologies. Initially, a Gregorian subreflector with untreated edges was used to feed the 16' x 16' blended rolled edge main reflector. The designed frequency range of the untreated subreflector was 6-18 GHz. In 1993 a new resistive card edge treated subreflector was built and installed enabling the frequency range to be extended on the low end down to 2 GHz. The subreflector performance was measured by probing the fields in the test measurement or quiet zone. A 14' linear composite prober was made to measure the fields out onto the rolled edge sections of the main reflector. Characteristics of the subreflector, main reflector, and the coupling aperture between the reflectors were identified. Of particular interest was the effect of the resistive card treatment on the nature of the caustic fields in the aperture. A surface distortion was also identified on the rolled edge portion of the main reflector.

Performance evaluation of serrated edge and blended rolled edge compact range reflectors
T-H. Lee,W.D. Burnside, November 1995

Evaluation of serrated edge and blended rolled edge compact range reflectors is presented in this paper. An interactive approach is used to design the serrated reflectors. Several issues associated with the serrated reflectors are also discussed in this paper. Quiet zone fields for various serrated edge with an optimally designed blended rolled reflector are presented for comparison. In addition, simulations of a low sidelobe phased array measurement using serrated and blended rolled edge reflectors are shown to investigate their impact on the measurement accuracy.

Compact range evaluation at LF frequencies
I.J. Gupta,A. van der Merwe, November 1995

A new technique for eliminating the desired planar wavefront (DPW) from the quiet zone fields of a compact range is described. In the technique, the probe data is modeled as a sum of a finite number of damped exponentials. A modified Prony's method is used to estimate the parameters of the damped exponentials. Next, the damped exponentials correspond­ ing to the DPW are identified and are subtracted from the probe data. Using simulated examples, it is demonstrated that at low frequencies the proposed technique performs much better than the other frequently used techniques for removing the DPW from the probe data. This, in turn, help in imaging the stray signals in a compact range.

Deconvolution method for correcting antenna measurement errors in compact antenna test ranges, A
P.L. Garcia-Muller,J-L. Cano, R. Torres, November 1995

High performance antennas require very accurate measurements which are difficult to meet in the conventional compact antenna test ranges. This measurement errors are produced by the non perfect plane wave synthesized by the compact range system. By the application of the reaction between the antenna under test true pattern and the compact range incident field, a closed form relation is found for the measured radiation pattern. Under certain conditions, this measured pattern can be approximated by the convolution of the two diagrams. In this paper it is presented the inverse procedure: the deconvolution to numerically calculate either the true radiation pattern of the antenna under test or the plane wave spectrum of the compact range incident field . The effectiveness and limitations of the method are discussed by numerical simulations and tested by measurements.

Study of simple geometric shapes by polarimetric radar
P.S.P. Wei,A.W. Reed, B.Z. Shaw, C.F. Suter, D.C. Bishop, November 1994

New results from complete scattering matric measurements on string-suspended simple geometric shapes - from the Boeing 9-77 compact range - are presented for the first time.

Cross-polarized pattern measurement on point-source compact ranges
D.W. Hess, November 1994

Earlier measurement results are reviewed to understand the result that cross -polarized patterns agree well when compared between a point-source compact range and spherical near-field scanning. By taking account of the symmetry of the aperture distribution, one can see how the cross-polarized pattern can be affected only moderately by the classic polarization feature of an offset reflector geometry.

MSAT antenna measurement program
P. Ilott,F. Menard, N. Kefauver, Y. Patenaude, November 1994

The MSAT satellite payload [1] included the large L-Band Tx and Rx deployable reflector antenna subsystems, the Ku-Band downlink antenna, and the telemetry and command omni. The technical challenges associated with these antennas required a considerable amount of advanced testing for concept development and design, as well as for customer acceptance. The L-Band feed array breadboards were measured to quantify effects of mutual coupling. The L-Band antenna performance was verified by near-field measurement techniques and computer modelling. The Ku-Band shaped reflector antenna was tested in SPAR's compact range. A short summary is given of the omni antenna tests, and the PIM tests carried out on the L and Ku antennas.

System engineering for a radome test system
J.R. Jones,D. Smith, D.M. Folsom, D.W. Hess, V. Jory, November 1994

This paper will discuss the system level design of a radome test system implemented in a compact range. The system includes a tracking pedestal controlled by an autotrack controller, a measurement receiver, a unique five-feed arrangement for the compact range which accommodates both tracking and measurement functions, and a laser autocollimator for coordinate system referencing. Key elements of system design include the required coordinate system transformations, the mechanical design of the positioning system and its contribution to the system error budget, the dynamics of the tracking system, and the synchronization of the autotrack controller, the measurement receiver, and the system controller. These aspects of system design will be discussed and measurement and analysis results will be presented.

Low frequency operation, design, and limitations of the compact range reflector
S. Brumley, November 1994

Traditionally the Compact Range is not considered a viable method for conducting low frequency (VHF/UHF) antenna or RCS measurements because of the limited electrical size of the collimating reflector system. Normally, compact range measurements are conducted in the extreme near-field or the collimating system where to reflector size is on the order of 25 to 30 wavelengths minimum with at least four wavelength edge treatments. This mode of operation limits measurements to the high UHF band (800 MHz) and above for typical sized reflector systems in use today. Recent research with compact range3s indicates that acceptable VHF.UHF measurements can be conducted in the quasi far-field region of the collimating system with reflectors as small as five wavelengths and with electrically short edge treatments. A good user knowledge of this mode of operation is required to maximize its utility. A qualitative measure of acceptable quiet zone performance must also be established. This paper addresses the theory of operation, practical implementation and inherent limitations of the non-conventional use of the indoor compact range for conducting low frequency measurements.

High performance medium gain antenna applications in the compensated compact range
T. Jakob,H-J. Steiner, J. Neve, J.F. Coroller, M. Boumans, November 1994

The Compensated Compact Range (CCR) has been proven to be a high performance test facility for payload and large satellite antenna measurements. To efficiently measure complete antenna farms with various types of antennas on the spacecraft in the same test campaign led to the growing demand for testing e.g. Global Horn antennas on the spacecraft in the CCR. As a matter of fact, medium gain antennas feature a small aperture simultaneously requiring larger test angles. Therefor, main interferer like "direct leakage" between the CCR feed and the antenna under test have to be quantified and their impact on the measurement accuracy have to be reconsidered. The presented paper will investigate theoretically the feasibility of testing high performance widebeam antennas in the Top-Fed-Cassegrain double reflector system. Qualified measurement results of INTELSAT Global Horn Antennas featuring medium gain and extreme crosspolarization purity will be presented.

PTD analysis of serrated edge compact range reflector, A
Y-C. Chang,M. Jin Im, November 1994

A PTD (Physical Theory of Diffraction) code has been developed to analyze the quiet zone performance of serrated edge compact range reflectors. This PTD code utilizes a modified Ludwig's method to achieve fast convergence for the PO (Physical Optics) integration and the ILDC (Incremental Length Diffraction Coefficients) method to calculate the diffraction correction due to the edge current. In this paper, key formulations for this approach will be derived. Calculated results for an example range will be shown and compared with other published data.

UCLA compact range: design and characterization, The
J.P. McKay,Y. Rahmat-Samii, November 1994

The design, alignment and characterization of a compact range facility at the University of California at Los Angeles is summarized. The range is intended to operate from X-Band to 60 GHz, and to accommodate test items up to 3 feet in diameter. The compact range reflector is a circular aperture offset paraboloid which is devoid of edge treatment. Reduction of reflector edge diffraction effects is achieved using an array feed for narrowband test applications, or a horn feed for broadband test requirements. The array feed requires only one relative amplitude excitation coefficient and no phase shifters, so that a simple and cost-effective implementation using a radial transmission line beam-forming network is possible The array pattern displays a deep null at the reflector rim for diffraction reduction, and a flat-topped beam which results in minimum quiet zone field amplitude taper and high reflector aperture efficiently. Structures for support and alignment of the range reflector and feed are discussed, and alignment procedures are summarized. Range performance at X-Band using an array feed is determined using transverse and longitudinal pattern comparison methods.

Analysis of anechoic chamber performance
T-H. Lee,J-R, J. Gau, W.D. Burnside, November 1994

One critical issue in designing absorber for an anechoic chamber is the bistatic scattering performance of the absorber and its effect to the quiet zone field quality. The bistatic scattered fields from the absorber side walls, floor and ceiling of the range result in undesired stray signals which can cause significant measurement errors. Consequently, it is very important to analyze the performance of the absorber from the overall system point of view; i.e., the performance of the absorber in the range environment. This paper will address this issue and present calculated results of absorber wall performance for a compact range with a blended rolled edge reflector.

Plane wave synthesis at Fresnel zone distances using a phase-tapered aperture
J.P. McKay, November 1994

It is shown that a phase-tapered aperture may be used to produce a uniform plane wave at Fresnel zone distances. This allows one to perform antenna/RCS measurements at reduced distances relative to a far-field range, but without the illuminator complexity and cost associated with a compact range. An asymptotic expression is obtained for the Fresnel field of a circular aperture field source distribution characterized by a large quadratic phase taper. The field is shown to be equivalent to that produced by a uniform ring source and central radiator, so that the design equations for the ring source and central radiator can be applied to plane wave synthesis using a circular phase-tapered aperture. The asymptotic expression for the field as compared with a numerical evaluation obtained using aperture integration. A simple implementation of a phase-tapered aperture using a radiating source which illuminates an aperture at a distance is presented. A quiet zone field extent which is approximately 70-80% of the source aperture extent is demonstrated.

Experimental RCS analysis of a communications antenna mounted on a large cylinder
E. Walton,H.W. Tseng, November 1994

The radar scattering from a small communications antenna mounted on a large cylinder was measured at the Ohio State University ElectroScience Laboratory compact range. This paper will describe the experimental measurement techniques and the details of the analysis of the experimental. The small (5 cm) blade/slot/cavity antenna was mounted on a 1.82 meter long cylinder of 0.61 meter diameter. The cylinder was treated with RAM on the ends to reduce the direct and interactive end scattering effects, and was mounted in the OSU compact RCS measurement range. Measurements over the 2 to 18 GHz band both with and without the antenna were made and the results subtracted during the calibration effects to further remove the end effects. We will demonstrate these techniques and evaluate their effectiveness. ISAR imaging of both the antenna and the scattering term associated with the load on the end of the antenna transmission line will be shown. This will demonstrate that the transmission line and loan can be separately evaluated using such techniques. A time frequency distribution (TFD) analysis technique will also be demonstrated as a means of extracting various antenna resonance terms from the data. A description of the theoretical computation of the scattering will also be given and the special aspects of this problem outlined. The theoretical RCS data will be compared to the experimental measurements of the RCS.

Simulation of actual antenna and chamber under test
T-H. Lee,W.D. Burnside, November 1994

For an anechoic chamber design, one normally spec­ ifies the field quality throughout the quiet zone in terms of the ripple level requirement. The ripple in the quiet zone field is caused by the interfer­ ence of various stray signals with the desired plane wave. The stray signals in an anechoic chamber can come from absorber or other parts of cham­ ber. However, from a range performance point of view, it is more important to know the ef­ fects of stray signals on the measurement accu­ racy of an antenna radiation or target scattering pattern. Consequently, it is very critical to eval­ uate how the chamber stray signals will affect a given measurement. This paper addresses this is­ sue by simulating pattern measurements of a phase scanned array in a compact range and discuss the effects of various stray signals associated with the scattering from absorber walls and feed spillover.

Application of flexible scanning in advanced APC techniques
J. van Norel,A.H. van Gastel, J. Neve, J.F. Coroller, V.J. Vokurka, November 1994

Present day accuracy requirements on high-performance antenna measurements are difficult to meet on any type of compact range. Numerical correction techniques can offer a good solution. An easy and effective method is the Advanced APC-technique. This method requires patterns to be measured on different locations in the test zone so that disturbances of the plane wave can be distinguished. In case of suitable distances, the "true" pattern can be derived from measured amplitude and phase data. Usually, scanning is performed in longitudinal direction. The advantage is that mutual coupling can be distinguished well, but the field ripple in this direction due to extraneous fields varies much slower than in transversal direction. Consequently, first sidelobes can be corrected more efficiently when transversal scanning is performed. Therefore, in this paper a new and flexible way of positioning is proposed depending on the location of extraneous field sources.

Instrumentation upgrade for ultra-high speed data acquisition in the DASA compensated compact range
H.F. Schluper,H-J. Steiner, J.F. Aubin, T. Jakob, November 1994

Deutsche Aerospace is developing and testing high­ performance communications antennas for the INTELSAT program. A large number of antenna measurements must be performed, for two polarizations, multiple frequencies and multiple beams. To measure all parameters in a single rotation of the antenna, a high­speed instrumentation system is required. The instrumentation was upgraded using the latest technology in receivers, sources and control systems. Commercially available components were used for all components. The resulting system can perform a complex antenna measurement consisting of over four million data points within only two hours.

Automated test sequencer for high volume near-field measurements, An
G. Hindman,D. Slater, November 1993

Test sequencing flexibility and high throughput are essential ingredients to a state-of-the-art near-field test range. This paper will discuss methods used by NSI to aid the operator through the near-field measurement process. The paper will describe NSI's expert system and customer applications of a unique test and processing sequencer developed by NSI for optimizing range measurement activities. The sequencer provides powerful control of software functions including multiplexed measurements, data processing and unattended test operations.

Evaluation of compact ranges for low sidelobe antenna measurements
I.J. Gupta,W.D. Burnside, November 1993

A method is presented to qualify a compact range measurement system for low sidelobe antenna measurements. The method uses the target zone fields (probe data) of the compact range. Using the method, one can identify the angular regions around which the measurement errors can be significant. The sidelobe levels which can be measured around these angular regions with less than a 3 dB error are also defined.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30