AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

High Accuracy Heavy Load Positioning System for Compact Range
M. Pinkasy,Roni. Braun, Y. Bitton, November 2004

Large satellites antennas are best measured in specially designed compact range systems designed for aerospace applications, located in a clean room environment. This testing requires very large, high accuracy positioners to accommodate full size satellites. Typical requirements include positioning accuracy of 0.003 degrees for a payload of 5 tons. ORBIT/FR has recently delivered to Astrium a unique payload positioner system specifically built for such high accuracy applications. This positioner provides the ability to accurately locate satellite payloads in the Astrium compact range system chamber to within the tolerances necessary to perform all radiated payload tests for specification compliance. In order to realize the required accuracy performance, an extremely stable positioner construction is required, such that near-perfect orthogonality between the rotary axes is maintained, and minimum structural bending is exhibited. This level of construction quality is realized by a unique elevation axis bearing configuration, in conjunction with an adjustable counter-weight system. In addition, very high accuracy absolute optical encoders are used; these exhibit higher accuracies than the traditional Inductosyn type of encoder. All axes are equipped with brakes on the primary axis to eliminate backlash. Alignment requirements further accentuate the need to be able to position to within a few thousandths of a degree. This in turn places difficult requirements on low speed operation and on the control system. This paper details the design and performance of such a positioning system as measured for two compact range installations utilized for satellite antenna testing applications.

Selecting the Optimum Source Antenna for an Antenna Measurement in an Anechoic Chamber
L.H. Hemming (Electromagnetic Test Facility Design), November 2003

The optimum source antenna in an anechoic chamber provides adequate uniform amplitude illumination of the antenna under test, but it minimizes the level of energy reflected from the walls of the chamber. The selection is a function of the range length (R), test aperture (D), source antenna gain (G), and the chamber’s aspect ratio (AR) (range length/width). The latter sets the angle of incidence seen by the absorber on the chamber walls. Adequate phase uniformity is assumed.

Uncertainty Analysis for Spherical Near-Field Measurements
M.H. Francis,R.C. Wittmann, November 2003

A general approach is introduced for estimating uncertainties in far-field parameters obtained from spherical near-field measurements. Although the analysis is incomplete at present, we expect that as the measurement radius increases, our results will transform smoothly into the far-field case, where uncertainties depend on the on-axis gain and polarization of the probe and on the measurements in the far-field direction of interest.

Design of Dielectric Rod Antenna for Near-Field Probe
H. Lee (ElectroScience Laboratory),C-C Chen (ElectroScience Laboratory), K. Sickles (WPAFB/SRL), R. Lee (ElectroScience Laboratory), November 2003

A prototype design of the dielectric rod antenna is discussed. This novel design is suitable for nearfield probing application in that it provides broad bandwidth, dual-polarization and low RCS. The design details are provided in this document along with measurement data associated with important antenna characteristics such as VSWR and far-field radiation pattern

Comparison of Polar Reformat and Back Propagation Techniques with Near-Field Data
N. Cheadle (NAVAIR/WEAPONS DIVISION), November 2003

This paper will compare and evaluate the results of two imaging techniques on near-field ISAR data. The two techniques are polar reformat and back propagation. The back propagation technique is a wave number technique that accounts for wave front curvature. The techniques are evaluated on simple targets at various image distances and aperture extents. Finally a suggestion is made to when the more computationally complex back propagation technique should be used.

NGST's New Phased Array Test Facility
J. Way (Antenna Products Center), November 2003

As satellite communication systems grow increasingly complex, so has the need for spacebased phased array antennas. After these antennas have been designed and assembled, they need to be tested. This paper describes the new antenna measurement facility that NGST (Northrop Grumman Space Technology) has installed to that end. This includes descriptions of near-field and compact ranges that are integral parts of the Phased Array Assembly, Integration and Test Area.

Qualification Measurements for Satellite Uplink Arrays
R.B. Dybdal (The Aerospace Corporation), November 2003

Qualification measurements of phased array antennas for communication satellite uplink applications present new measurement challenges. These measurement challenges include verifying array element excitation accuracies, amplitude and phase tracking over environmental conditions, and corrections for antenna noise temperature that are not required for conventional aperture antenna designs. Additionally, the usual antenna characterization parameters must be established as well. These measurement issues are discussed.

Study of RCS Measurements From Small Spheres
P.S.P. Wei (The Boeing Company),J.P. Rupp (The Boeing Company), November 2003

New results are presented on using small spheres mounted on a foam tower for calibration. Subtraction of the foam tower response is found to be necessary and sufficient for the dual-calibration method to work.

Antenna Pattern Analysis and Correction Using Higher-Order Derivatives
P. Kolesnikoff (Ball Aerospace), November 2003

Occasionally, antenna patterns have discontinuities or “glitches” in them. While most of these glitches are obvious to a human looking at the plot, it can be difficult for a computer to automatically identify glitches while ignoring sidelobes and other real features of the antenna pattern. This paper will present a technique for accurately identifying and removing antenna pattern glitches through the use of higher order derivative information.

Measurement of EIRP and Antenna Response for Active Antennas with Spherical Near-Field Scanning
D.W. Hess (MI Technologies), November 2003

A measurement technique for Effective Isotropic Radiated Power (EIRP) using planar near-field scanning has been demonstrated earlier. In this paper I show how we at MI Technologies have implemented using the spherical near-field method the measurement of EIRP and a vector phasor quantity analogous to Effective Area that we call Antenna Receive Response. This technique is applicable to all antennas, including active antennas.

Two-Sphere Interference in RCS Measurements and Imaging
P.S.P. Wei (The Boeing Company),A.W. Reed (The Boeing Company), C.N. Ericksen (The Boeing Company), November 2003

New RCS data on two-sphere in rotation are presented. From the simple geometry, the results allow us to verify both the cross-range and down-range distance scales in imaging. With the known RCS of the individual spheres, we find that it is feasible to calibrate the image RCS scale to dBsm, provided when care is taken to mitigate the shadowing and sidelobe effects.

Update on the Air Force Research Laboratory Advance Compact Range Calibration Uncertainty Analysis
B. Welsh (Mission Research Corporation),B. Muller (Mission Research Corporation), B.M. Kent (Air Force Research Laboratory/SNS), D. Turner (Air Force Research Laboratory/SNS), W. Forster (Mission Research Corporation), November 2003

A calibration uncertainty analysis was conducted for the Air Force Research Laboratory’s (AFRL) Advanced Compact Range (ACR) in 2000. This analysis was a key component of the Radar Cross Section (RCS) ISO-25 (ANSI-Z-540) Range Certification Demonstration Project. In this analysis many of the uncertainty components were argued to be small or negligible. These arguments were accepted as being reasonable based on engineering experience. Since 2000 the ACR radar has been replaced with an Aeroflex Lintek Elan radar system. A new measurement uncertainty analysis was conducted for the ACR using the Elan radar and for a general (non-calibration) target. We present results comparing the previous results to the current analysis results.

Uncertainty Analysis of RCS Calibrations at the Etcheron Valley Range
L.A. Muth (National Institute of Standards and Technology),D. Diamond (NAWC-WD, NAVAIR), J. Adams (NAWC-WD, NAVAIR), J. Liles (NAWC-WD, NAVAIR), November 2003

We have been developing an uncertainty analysis of RCS calibrations and measurements in the 2 – 18 GHz range at the Etcheron Valley RCS outdoor ground-bounce facility. In this study we report on the results of the uncertainty analysis primarily at 11.3 GHz, but results at some other frequencies are also discussed. We plan to address all components of uncertainty, and present here in some detail the procedures used to determine the uncertainties due to nonplanar illumination, drift, noise-background and nonlinearity. We use a measurement-based approach to obtain upper-bound estimates for the component uncertainties, which are combined using root-sumsquares (RSS) to obtain the overall uncertainty. The uncertainties at any frequency can be determined using these measurement procedures.

SOLANGE, An Enhanced RCS Measurement Facility of Full Size Aircraft
L. Le Dem (Technical Center for Armament Electronics), November 2003

This paper describes the RCS measurement test facilities, CHEOPS, STRADI and SOLANGE which are operated in the Technical Center for Information Warfare (CELAR) in France, with a particular focus on SOLANGE. CHEOPS is an anechoïc chamber convenient for the measurement of small missiles as well as antennas measurement. STRADI is an outdoor facility, which is convenient for measurement of land vehicles, helicopters and large antennas. SOLANGE is an indoor RCS measurement facility used to measure long missiles and aircraft. Originally built in 1985, SOLANGE has been continuously upgraded to fulfill all customers requirements in the field of RCS measurement. Thanks to the in house radar instrumentation and data processing software, SOLANGE can reach a very good performance on small or big RCS targets from 200 MHz to 18 GHz. The UHF/VHF capacity has been recently enhanced thanks to the upgrade of the positioning system and the cooperation between CELAR and CEA.

Intra Range Measurement Comparisons at SNF/FF Antenna Measurement Facility of Fraunhofer IIS
R. Wansch (Fraunhofer-Institute for Integrated Circuits),P. Betjes (Nearfield Systems, Inc.), November 2003

The Institute for Integrated Circuits of the Fraunhofer Gesellschaft recently acquired a combined spherical nearfield / far-field (SNF/FF) antenna measurement range with a shielded anechoic chamber for verifying passive and active antenna design concepts. A single 9-pin digital control connector allows the range to remain sealed from external RF, while maintaining full motion and data acquisition control. This set-up uses two different illuminators, separated 180° as seen from the AUT. This combined SNF/FF configuration gives the opportunity to perform intra-range measurement comparisons (SNF vs. FF) with not only the distance between AUT and illuminator being varied, but also with the measurement zone being reversed. In this manner, a comparison between SNF and FF measurements also compares the quality of two sides of the measurement chamber.

Far-Field Range Design by Using Finite-Difference Time-Domain Method
H-T Chen (Chinese Military Academy),E. Chang (Wavepro, Inc.), November 2003

An indoor far-field range consists of the appropriate instrumentation and an anechoic chamber. In most of cases, the construction of the anechoic chamber is a laboring task and costs at a great expense. To save the money and labor, efforts for the range design are needed before the chamber been constructed. In this paper, the finite-difference time-domain (FDTD) method is employed to establish the design criteria for the far-field ranges. The commercial package named “FIDELITYTM”, based on FDTD algorithm released by Zeland Software, Inc., is used for the numerical calculations. To emulate the test procedure of the free-space VSWR technique, the electric fields of the points on the scanning axis are recorded during the simulation. And then, by plotting the amplitude ripples calculated from the recorded data, the range performance can be evaluated. The criteria of chamber layout, absorber arrangement, and source antenna selection and placement will be presented and discussed.

Estimating the Uncertainties Due to Position Errors in Spherical Near-Field Measurements
A.C. Newell (Nearfield Systems Inc.), November 2003

Probe position errors, specifically the uncertainty in the theta and phi position of the probe on the measurement sphere, are one of the sources of error in the calculated far-field and hologram patterns derived from spherical near-field measurements. Until recently, we have relied on analytical results for planar position errors to provide a guideline for specifying the required accuracy of a spherical measurement system. This guideline is that the angular error should not result in translation along the arc of the minimum sphere of more than ?/100. As a result of recent simulation and analysis, expressions have been derived that relate more specifically to spherical near-field measurements. Using the dimensions of the Antenna Under Test (AUT), its directivity, the radius of the sphere (the minimum sphere) enclosing all radiating surfaces and the frequency we can estimate the errors that will result from a given position error. These results can be used to specify and design a measurement system for a desired level of accuracy and to estimate the measurement uncertainty in a measurement system.

Axial Ratio Errors When Using Linearly Polarized Probes in Planar Near-Field Measurements
P.R. Rousseau (The Aerospace Corporation),C.M. Turano (The Aerospace Corporation), M.S. Yonezaki (The Aerospace Corporation), W.C. Wysock (The Aerospace Corporation), November 2003

For a planar near-field range, it is sometimes convenient to use a linearly polarized probe to measure a circularly polarized antenna. The quality of the circular polarization of the test-antenna is determined by the measured axial ratio. This requires the amplitude and phase from two near-field scans, one scan with the probe polarization oriented horizontally and another vertically. A lateral probe position error between the horizontal and vertical orientations can occur if the probe is not aligned properly with the probe polarization rotator. This particular probe position error affects the accuracy of the axial ratio in the main beam if the beam of the test antenna is not perpendicular to the scan plane. This paper presents analysis and measurement examples that demonstrate the relationship between the errors in the axial ratio and the lateral probe position. It is shown that the axial ratio, within the main beam, is not sensitive to the lateral probe position error when the beam is normal to the scan plane. However, the error in the axial ratio in the main beam can be quite significant with a small lateral probe position error if the antenna beam is tilted at an angle with respect to the scan plane. A simple phase correction algorithm is presented that is useful for measured data from an electrically large aperture.

An Augmented Three-Antenna Probe Calibration Technique for Measuring Probe Insertion Phase
A. Frandsen (TICRA),D.W. Hess (MI Technologies), O. Breinbjerg (Ørsted-DTU), S. Pivnenko (Ørsted-DTU), November 2003

Probe calibration is a prerequisite for performing high accuracy near-field antenna measurements. One convenient technique that has been used with confidence for years consists of using two auxiliary antennas in conjunction with the probe-to-be-calibrated. Inherent to this technique is a calibration of all three antennas. So far the technique has mostly been applied to measure polarization and gain characteristics. It is demonstrated how the technique can be extended to also measure an antenna’s phase-versus-frequency characteristic.

Alignment of a Large Spherical Near-Field Scanner Using a Tracking Laser Interferometer
S. Pierce (MI Technologies),C. Liang (MI Technologies), November 2003

In this paper, we describe the process used to align a large spherical near-field test system. The probe positioner consists of a cantilevered arc design with a probe path radius of five meters and a scan angle of 180°. The AUT positioner consists of an MI Technologies Model 51230 azimuth positioner with a high-precision encoder. The system is aligned using an SMX Tracker 4000 tracking laser interferometer. Alignment into a spherical system is achieved by initially defining two cylindrical systems; a primary probe positioner based system and a secondary, AUT positioner based system. Sources of mechanical error in each of these systems are identified and techniques used to control these error sources are described.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31