AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

Full Sphere Far-Field Antenna Patterns Obtained Using a Small Planar Scanner and a Poly-Planar Measurement Technique
S. Gregson,C. Parini, J. McCormick, November 2006

This paper presents an overview of work carried out in developing the probe-corrected, poly-planar near-field antenna measurement technique [1, 2, 3, 4, 5]. The poly-planar method essentially entails a very general technique for deriving asymptotic far-field antenna patterns from near-field measurements taken over faceted surfaces. The probe-corrected, poly-planar near-field to far-field transformation, consisting of an innovative hybrid physical optics (PO) [6] plane wave spectrum (PWS) [7] formulation, is summarised, and the importance of correctly reconstructing the normal electric field component for each of the discrete partial scans to the success of this process is highlighted. As an illustration, in this paper the poly-planar technique is deployed to provide coverage over the entire far-field sphere by utilising a small planar facility to acquire two orthogonal tangential near electric field components over the surface of a conceptual cube centred about the antenna under test (AUT). The success of the poly-planar technique is demonstrated through numerical simulation and experimental measurement. A discussion into the limitations of the partial scan technique is also presented.

Hemispherical Near-Field Antenna Measurements in an EMC Chamber Environment
G. Pinchuk,E. Katz, R. Braun, T. Kozan, November 2006

Hemispherical Near-Field (NF) antenna measurement technique has been applied for automotive antenna testing within a chamber dedicated to EMC tests. An existing turntable was used for azimuth rotation of a vehicle and a new portable 90°arch was added for elevation scanning of the radiated NF of the Device Under Test (DUT - vehicle with the antenna). Two antenna types were tested during chamber commissioning, one for GPS and another for XM satellite radio applications at frequencies 1.57 and 2.33 GHz respectively. Test results have shown that the EMC chamber can be successfully used for automotive antenna measurements as well, with accuracies acceptable for automotive applications. For higher operating frequencies, the EMC absorbers must be changed to less reflective material. In the paper, the measurement system is described, and the test results are presented, as well as some considerations on far-field pattern restoration based on measured hemispherical NF data.

A Compact Spherical Near-Field Antenna Test System for 800 MHz to 18 GHz
N. Robic,A. Gandois, L. Duchesne, P. Garreau, November 2006

Spherical near field measurement techniques combined with probe array technology offer a fast and accurate way to measure antenna performances. The use of increasingly higher frequencies and reduced testing time in all modern antenna applications has increased the need for probe array based measurement systems at higher frequencies.

The RCS Calibration Uncertainty of Balloon Tethered Spheres For Outdoor RCS Measurement Systems
B. Kent,A. Buterbaugh, L. Cravens, T. Coveyou, W. Forster, November 2006

Hollow metallic aluminum spheres have been used for years for calibrating RCS measurement systems both indoors and outdoors. While many previous papers have identified the RCS calibration shortfalls associated with spheres [1,2], most of these papers have concentrated on indoor RCS measurement systems, where there exist a number of accurate calibration alternatives to spheres, including the so-called "squat cylinder" [3,4]. For outdoor free space RCS measurement systems, especially those designed to measure dynamically moving or changing targets, (i.e. the NASA Shuttle C-Band Debris Radar), calibration is a much tougher problem. Frequently, spheres are used to calibrate such systems, by releasing and tracking a sphere attached to a lighter-than-air balloon, or by tethering a sphere to a lighter-than -air balloon and allowing it to float through a fixed radar beam. Recently, the Air Force Research Laboratory Mobile Diagnostic Laboratory (MDL) had the opportunity to measure the clutter and uncertainty associated with balloon tethered Sphere RCS calibrations. Two spheres were measured suspended by various string types and a line under an 8 ft. diameter tethered Helium filled balloon. We will provide design guidance, signal processing techniques and measurement uncertainty to help minimize the clutter and error induced by balloon borne RCS calibration spheres.

Study of RCS Measurements from a Large Flat Plate
P.S.P. Wei,A.W. Reed, C.N. Ericksen, M,D. Bushbeck, November 2005

Abstract. We present new RCS measurements from an 8-foot square flat plate for frequencies from 0.15 to 5.5 GHz. Guided by the theory, we study the peak RCS at normal incidence, the principal plane pattern, and the 3-dB beam-width in detail. The broadside echo from the plate is found to be extremely narrow at higher frequencies. From the errors, we estimate that the wave-field experienced by the plate is reasonably uniform to within +0.3 dB, over a wide dynamic range of 60 dB.

Obtaining High Quality RCS Measurements with a Very Large Foam Column
M.C Baggett,T. Thomas, November 2005

A large compact range facility required a foam column for RCS testing where the center of the quiet zone was six meters above the floor level. The RCS measurement after vector background subtraction, had to be accurate down to a –50 dBsm level from 1.5 GHz to 40 GHz. A foam column was constructed from a single billet of material. The foam column was evaluated as to its RCS level in both whole body and ISAR imaging modes. This paper describes the specification, construction and RCS evaluation of this column in the compact range facility. The column was evaluated at single frequencies and with RCS images from 2 GHz to 36 GHz using a gated CW radar. Data is presented that shows the effects of the column on the response of a calibration sphere and the response of the column itself. A study of the foam column imaging response used as the background for vector background subtraction is also described. Targets in the –60 dBsm range were successfully imaged with vector background subtraction of the foam column.

RCS Measurements of LO-Targets in a High Clutter Environment using SAR and ISAR
C.U.S. Larsson,C-G. Svensson, O. Ahnlund, November 2005

ABSTRACT Conventional radar cross-section measurement ranges have limitations. Indoor anechoic chamber ranges have limitations with respect to the size of the objects that can be measured. Outdoor RCS ranges cannot be used in bad weather conditions and also pose a security problem when the designs are classified or proprietary. Limitations in availability are also common for both outdoor and indoor ranges. An alternative is to use a conventional lab area. The key to successful measurements of LO-targets in such high clutter environments is efficient coherent background subtraction. Coherent background subtraction was performed for ISAR and SAR and compared to the zero-Doppler subtraction method for ISAR in this study. The results from the measurements are compared with calculated results. We find that the ISAR and SAR techniques are comparable in performance but that it is advantageous to use ISAR for small objects due to practical reasons. We conclude that both SAR and ISAR can be utilized for LO targets.

Pattern Measurement Demonstration of an Untouchable Antenna
M.H. Paquay,J. Marti-Canales, November 2005

A method is presented to measure the antenna pattern of an AUT where the antenna port is inaccessible. That means that it is not possible to connect a test cable, nor can the termination be changed physically. In some cases there is no test port at all. The only variation possible is to change the input impedance of the first receiver or LNA by switching it on and off. An RCS-technique can be used to retrieve the radiation pattern. By experimental comparison between the conventional pattern measurement technique and the RCS-technique it is shown that pattern determination via RCS-measurements is feasible. In addition, the measurement method offers the advantage of directly reducing the influence of systematic measurement errors. On the other hand, the penalty is put on power efficiency and a subsequent limited dynamic range.

National RCS Test Facility (NRTF) Pit 9 Range Book Review
T.J. Hestilow,B.R. Kurner, November 2005

The paper deals with the Range Book review process, and in part describes the evaluation of the National RCS Test Facility (NRTF) Pit 9 Range Book against the criteria approved by the Range Commander’s Council Signatures Measurement Standards Group (RCC/SMSG). In addition, the paper discusses issues common to the range community. Three RCC/SMSG approved reviewers and one observer were charged with reviewing the processes and procedures documented in the RCMS Range Book against published criteria based on the ANSI-Z540 standard [1, 2, 3]. The paper discusses the process used by the evaluators to perform reviews, the selection of and need for reviewers, documentation issues, the quantification of weather factors, and lessons learned. In addition, the paper details some of the benefits of the Range Book Review process.

Measurement of Backscattering from RFID Tags
P. Nikitin,KVS. Rao, November 2005

This paper presents a method for measuring signal backscattering from an RFID tag and calculating tag radar cross-section (RCS), which depends on the chip input impedance. We present a derivation of a theoretical formula for RFID tag radar cross-section and an experimental RCS measurement method using a network analyzer connected to an antenna in an anechoic chamber where the tag is also located. The return loss of the antenna measured with and without the tag present in the chamber allows one to calculate the power backscattered from the tag and find tag RCS. Measurements were performed in anechoic chamber using RFID tag operating the base station (called “RFID reader”). RFID tag antenna is loaded with the chip whose impedance switches between two impedance states, usually high and low. At each impedance state, RFID tag presents a certain radar cross section (RCS). The tag sends the information back by varying its input impedance and thus modulating the back-scattered signal.

Electromagnetic Interference Attenuation of Test of the Space Shuttle Discovery using the Air Force Research Laboratory Mobile Diagnostic Laboratory
B. Kent,A. Griffith, A.L. Buterbaugh, J. Watkins, K. Freundl, L. Cravens, R. Scully, T Coveyou, November 2005

As NASA prepared the Space Shuttle for its first return to flight mission (STS-114) in July of 2005, a number of new visual and radar sensors were used during the critical ascent phase of the flight to assess if unintentional debris was liberated from the Shuttle as it raced into orbit. New high-resolution C-Band and X-Band radars were used to help ascertain the location and speed of released debris. We also used both radars to monitor debris generated by routine flight events such as Solid Rocket Booster (SRB) separation. To assure these new radars did not interfere with flight-critical engine subsystems, an Electromagnetic Interference (EMI) measurement was performed on the Shuttle Orbiter "Discovery" in January 2005, using the Air Force Research Laboratory's Mobile Diagnostic Laboratory (MDL). This portable EM Measurement system performed a large number of attenuation measurements the night of January 17-18, 2005. This paper describes how the attenuation data was acquired, and the methodology used to reduce the data to predict average attenuation of the radar energy from the outside world to the inside of the aft engine bay of the Orbiter. This data was combined with a separate NASA-performed avionics EMI analysis to demonstrate that the new C and X-Band Debris Radars could be operated without adversely interfering with the Orbiter aft bay Avionics systems.

Antenna Measurements Using Satellite Beacons
R.B. Dybdal, November 2005

Three methods are described to characterize ground antennas in frequency bands where satellite beacons exist. This measurement method is useful when the antenna to be tested cannot be easily measured using conventional general purpose facilities or radio source measurement techniques. The measurement methods are described, and the factors that result in measurement uncertainties are discussed. Key Words: Antenna Measurements, Gain Calibration, Ground Terminals

Wide-Band Dual Polarized Probe for Accurate and Time Efficient Satellite EIRP/IPFD Measurements
L. Foged,A. Giacomini, C. Bouvin, H. Garcia, L. Duchesne, S. Navasackd, November 2005

Payload testing is the only measurement where the real Significant reductions in the overall test time radiated end-to-end performances of the satellite are requirements for satellite EIRP/IPFD measurements measured and compared with respect to predictions. These are achievable if the traditional single polarization or critical measurements are performed in the ALCATEL narrow band dual polarization illuminators are ALENIA SPACE Compact Antenna Test Range in substituted with efficient wideband probes in dual Cannes as shown in Figure. 1. polarization. For C-band payload testing, the frequency bands of interest cover more than an entire octave: 3.4-4.8GHz (Tx) and 5.6-7.1GHz (Rx). The cross polarization and taper requirements on the field of view are such that a flared aperture horn can satisfy the requirement but the polarization purity places rather stringent requirements on the orthomode transition in terms of on-axis cross polarization levels and port to port coupling. A suitable probe for this application consists of two components: orthomode transition and radiating aperture. A flared aperture horn, including a stepped matching section, has been designed by ALCATEL ALENIA SPACE to satisfy the illumination Fig 1: ALCATEL ALENIA SPACE Compact Antenna specification. A wide-band dual polarized orthomode Test Range in Cannes. transition covering the entire C-band Tx and Rx During payload testing the antenna pattern measurements ranges has been developed by SATIMO to feed the and other systems tests are carried out. Two of the key horn. The effective bandwidth of the orthomode payload tests are the Equivalent Isotropic Radiated Power transition more than exceeds the specification and it is (EIRP) and Input Power Flux Density (IPFD) of the usable even throughout the Ku band. The final spacecraft [14]. illuminator has been manufactured by SATIMO and delivered to ALCATEL ALENIA SPACE for test in The EIRP is an indication of the power level capability of the Compact Antenna Test Range in Cannes. the telecommunication satellite within a given coverage This paper describes the definition of the performance on the earth surface. This performance is directly linked to specifications, the baseline horn and applied OMT the power budget of the satellite and to the requirements technology and final validation measurements. on the end user parabola diameter. The IPFD is a useful parameter to determine the needed power on the earth

Calibration of GPS On-Orbit Monitor
R. Dybdal,M. Partridge, November 2005

The calibration of a prototype system to monitor the on-orbit performance of heritage and modernized GPS satellites is described. While the monitor can measure other GPS parameters of interest, the calibration to accurately determine the received signal levels is described here. The calibration determines the monitor’s receive antenna gain and relates the received power at the antenna terminals to the indicated output of the monitor’s receiver. Key Words: System Calibration, Error Budgets, Satellite Measurement

Measurements of the CloudSat Collimating Antenna Assembly Experiences at 94 GHz on Two Antenna Ranges
J. Harrell,A. Prata, C. Lee-Yow, C. Stubenrauch, L.R. Amaro, R. Beckon, T.A. Cariveau, November 2005

This paper presents measurements of the CloudSat Collimating Antenna (CA) as fabricated for the 94.05 GHz CloudSat radar, which is to be used to measure moisture profiles in the atmosphere. The CloudSat CA is a 3 reflector system consisting of the 3 "final" (relative to the transmitted energy) reflecting surfaces of the CloudSat instrument. This assembly was fed by a horn designed to approximate the illumination from a Quasi-Optical Transmission Line (QOTL). This same horn was employed as a "standard" for measurement of the CA gain via substitution, and its patterns were also measured (this substitution represents a departure from the standard insertion loss technique in the near field range). The CloudSat CA presented a substantial measurement challenge because of the frequency and the electrical size of the aperture is approximately 600 wavelengths in diameter, with a nominal beamwidth of 0.11 degrees. In addition, very high accuracy was needed to characterize the lower sidelobe levels of this antenna. The CA measurements were performed on a 3122-ft outdoor range (this distance was 41% of the far field requirement), which were immediately followed by measurements in an indoor cylindrical Near Field (NF) range. The instrumentation challenges, electrical, mechanical, and environmental are described. Comparison of the outdoor vs. indoor pattern data is presented, as well as the effect of the application of tie-scans to the near field data.

Low Cost Satellite Payload Measurement System
J. Migl,W. Lindemer, W. Wogurek, November 2005

The performance of modern Satellites Antennas and Payloads is characterized by physical parameters like e.g. Antenna Pattern and Gain; EIRP, Flux Density, G/T and the overall PIM-performance. The available time frame for measurement of these parameters is getting constantly shorter. The EADS Astrium GmbH Compensated Compact Range (CCR) allows a time efficient measurement of all payload parameters with high accuracy under controlled environmental conditions. In addition to an efficient measurement facility high-performance measurement equipment is required. The economical budgets of most space programs demand the application of well-known measurement techniques in a cost efficient way. EADS Astrium GmbH supported by Agilent Technologies GmbH has developed an easy to handle and therefore cost optimized measurement platform for Satellite Payload Measurements. This platform consists mainly of a generic Agilent switch matrix operating up to 40GHz which can be connected to a wide range of measurement equipment. The matrix allows a highly flexible routing of the RF uplink and downlink signals including reference paths. Integrated and/or external RF components, like amplifiers, attenuators, and hybrids can be added to the paths, depending on the required test configuration. Starting from a minimum configuration the system can be modularly upgraded to satisfy any further test requirements. The software interface utilizes standard protocols and can be therefore easily addressed by any user specific measurement software. The EADS Astrium GmbH Advanced Antenna Measurement System (AAMS) includes an optional payload toolbox which provides a modular concept expandable for additional test functions.

POV-RAY Multipath Analysis for Newport Test Site
B. Voetberg,D. Warren, November 2005

The purpose of this project was to evaluate a section of terrain at our Newport test site to determine multipath areas. This is being done to test the possibility of a new test range on the area evaluated. The goals were to find a low cost process for detecting areas of specular reflection where multipath might occur and testing ways to minimize this multipath. The two main objectives in achieving these goals were to accurately model the terrain and then simulate the transmission of radio frequency (RF) energy at and onto that terrain. POV-RAY, persistence of vision ray tracer, is an open source artist’s program used to create three dimensional (3D) artwork with realistic lighting and shadows. POVRAY was chosen for a variety of reasons. Its 3D environment is easily manipulated in many ways: addition and placement of objects, reflective properties of objects, and animations of the environment. The light waves simulated by POVRAY represented the transmitted RF energy and the 3D environment was manipulated to react to these light waves as if they were RF energy. This paper explains our process and the results thus far.

A Feasibility Study of Phase Retrieval Algorithms at Sub-Millimeter Wavelengths
A. Von Lerber,A. Lisno, A.V. Räisänen, J. Ala-Laurinaho, V. Viikari, November 2005

The applicability of phase retrieval algorithms for near-field measurements was studied at sub-millimeter wavelengths. Two different phase retrieval algorithms were implemented according to the existing scientific literature and they were both tested and compared at 310 GHz using a planar near-field measurement data. The chosen algorithms were Plane-to-Plane Diffraction algorithm (PPD) and Conjugate-Gradient Method (CGM). A lens antenna with diameter of 60 mm was used in the measurement experiment and the distance between the measurement planes was 50 mm. With this distance both of these algorithms could retrieve the phase that agreed well with the measured phase. We also implemented a combined algorithm for improved convergence.

MUSIC 3D Bistatic High Resolution Imaging: A Theoretical Point of View
Y. Morel,O. Vacus, S. Morvan, November 2005

The use of “Spectral Analysis” algorithm in RADAR imaging is mainly motivated by the fact that RADAR signals are supposed to follow a very convenient model which says that the target echo (its scattering coefficient) can be decomposed into elementary scatterers, and that it can be modelled with a sum of complex exponential functions. This “high frequency” approach leads to the extensive use of Fourier imaging. When resolution becomes poor, due to the fact that the extent of the set of data is too small, one invokes High Resolution Algorithms like MUSIC or ESPRIT. This becomes particularly the case at low frequencies, where such a model is not valid anymore. The aim of the paper is to show that the use of the MUSIC algorithm can be related theoretically to the “characteristic fields” decomposition of the scattered electromagnetic field. The Harrington-Mautz “characteristic currents” theory leads to a decomposition of the bistatic scattering matrix of the target allowing naturally the use of the MUSIC algorithm to reconstruct the target. We show an application of this on a F117 calculated dataset. 3D bistatic images are obtained.

Monochromatic Multistatic Radar Imaging
J.C. Castelli,T. Jimenez, November 2005

ABSTRACT Conventional radar imaging techniques combine information in angle and frequency to obtain the location of the scatterers which contribute to the radar cross section (RCS) of a target. From these information, supposing that the scatterers have a white and isotropic behavior, a high resolution 2D image can be built. However, in certain circumstances (for example low frequency), the narrowness of the available frequency band and/or the frequency dependence of the scatterers may limit the resolution of the produced images. To circumvent this difficulty, an imaging technique based on multistatic data at fixed frequency is proposed. The use of monochromatic data to image a target was already studied in monostatic configuration. In this case, even if the resolution is very fine, the presence of high sidelobe which decrease slowly limits this technique to target’s reflectivity produced by a limited number of reflectors. In multistatic configuration, the situation is more favorable because weighting functions can be applied to control the level of the sidelobes. To illustrate the performances of this imaging technique, images obtained from the response of various targets measured at low frequencies are presented. Keywords: multistatic RCS, monochromatic radar imaging,







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30