AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

DATA REDUCTION IN THE NF-FF TRANSFORMATION TECHNIQUE WITH SPHERICAL SPIRAL SCANNING
Francesco D'Agostino (University of Salerno),Claudio Gennarelli (University of Salerno), Flaminio Ferrara (University of Salerno), Giovanni Riccio (University of Salerno), Massimo Migliozzi (University of Salerno), Rocco Guerriero (University of Salerno), November 2008

An effective near-field – far-field transformation technique with spherical spiral scanning tailored for antennas having two dimensions very different from the third one is here proposed. To this end, an antenna with one or two predominant dimensions (as, e.g., an elongated or quasi-planar antenna) is no longer considered as enclosed in a sphere, but in a prolate or oblate ellipsoid, respectively, thus allowing one to remarkably reduce the number of required data. Moreover these source modellings remain quite general and contain the spherical one as particular case. Numerical tests are reported for demonstrating the accuracy of the far-field reconstruction process and its stability with respect to random errors affecting the data.

Modeling and Simulation of Carbon Nanotube Antennas - Computational Challenges
George Hanson (University of Wisconsin-Milwaukee ),Dan McCarthy (United States Air Force Research Laboratory), Dawei Wang (RF Nano Corporation ), Peter Burke (University of California-Irvine), Ruilian Li (University of Wisconsin-Milwaukee), Steffen McKernan (RF Nano Corporation), John Huang (RF Nano Corporation), Zhen Yu (RF Nano Corporation), Christopher Rutherglen (University of California-Irvine), November 2008

Carbon nanotube antennas and antenna arrays are discussed as possible nanoantennas in the GHz frequency range. Due to their exceedingly small radius, carbon nanotubes present unique measurement and simulation challenges, unlike those encountered in ordinary antenna applications. In this paper, we present preliminary results for measurement and simulation of carbon nanotube based antennas.

Advanced Computational Tools for Antenna Placement Studies
Rensheng Sun (EM Software & Systems (USA) Inc.),Gopinath Gampala (EM Software & Systems (USA) Inc.), C. J. Reddy (EM Software & Systems (USA) Inc.), November 2008

Recent advances in computational electromagnetic tools have made antenna design possible along with integration of antennas on various ground, sea and air platforms. Numerical computations can be performed to evaluate the effects of antenna placement, radiation hazard, EMC/EMI, etc. The typical numerical approaches include full wave techniques such as Method of Moments (MoM), Multilevel Fast Multipole Method (MLFMM) and asymptotic techniques such as Physical Optics (PO) and Uniform Theory of Diffraction (UTD). For many practical applications, sometimes it is necessary to study the electromagnetic behavior on a specific structure over a broad frequency band, and therefore it is important to have some benchmark data on computational resources needed for some commonly used numerical techniques. In this study, representative full-size air, ground and sea platforms are considered and the frequency limit is pushed at different bands using several numerical techniques. The accuracy and computational resources are compared.

MODELING ANTENNA PATTERN DISTORTION CAUSED BY SUPPORTING STRUCTURES
Pablo A. Vicharelli (Equilateral Technologies Inc.),Donna Fagen (Equilateral Technologies Inc.), November 2008

This paper presents a technique for calculating the antenna pattern distortion caused by supporting structures such as buildings, towers, etc. The technique is based on ray tracing and the uniform theory of diffraction. The resulting distorted pattern can then be added to antenna databases and used as input to, for example, wireless network planning tools. The present method is fast and can considerably improve the accuracy of propagation calculations of radio frequency signals. A representative example from the application of this technique to an antenna mounted on the top of a building is presented.

NUMERICAL ANALYSIS OF SENSITIVITY OF PRECISION REFERENCE DIPOLE PERFORMANCE TO MANUFACTURING TOLERANCES AND WORKMANSHIP
Vince Rodriguez (ETS-Lindgren), November 2008

Dipoles are a typical reference antenna in measurements. Because its performance is calculable even in the near field it is commonly used as a reference. But while the ideal dipole is a calculable device, the actual reference dipole used in the lab can be far from the ideal. In this paper end fed sleeve dipoles commonly used as references in wireless measurements and traditional quarter wavelength dipoles used in a wide variety of applications including RFID testing are study. Misalignment, manufacturing tolerances, variations on dielectric, and messy solder points will be analyzed numerically and in some cases compared with measured data to see the effects of these problems on the final performance of a reference dipole unit.

Radiation Pattern Measurements and Predictions of the PLANCK RF Qualification Model
Gilbert Forma (Thales Alenia Space),Denis Dubruel (Thales Alenia Space), Fabrizio Villa (°INAF-IASF), Gerald Crone (ESA-ESTEC), Isabelle Ristorcelli (CESR), Jan Tauber (ESA-ESTEC), Javier Marti-Canales (ESA-ESTEC), Maura Sandri (°INAF-IASF ), Maurice Paquay (ESA-ESTEC), November 2008

PLANCK is one of the scientific missions of the European Space Agency, devoted to observe the Cosmic Microwave Background radiation with unprecedented accuracy. One of the key factors for the performance is the radiation pattern of the telescope, especially the sidelobe performance in the direction of hot celestial bodies like Sun, Earth and Moon. The satellite will operate around the L2 Lagrangian point in deep space under cryogenic conditions. These conditions can not be realized in an antenna test range for a payload of this size. Therefore, the predictions for the performance under flight conditions depend highly on numerical simulations. The model to be used had never before been verified to this level of confidentiality. The challenge was to conduct a test campaign at frequencies up to 320 GHz (far beyond the normal range of the used CATR) with a very large object (the PLANCK RF Qualification Model with an aperture size of 1.5 m, i.e. more than 1500 wavelength at 320 GHz) to demonstrate Sidelobe Levels down to -90 dB. A selection of the measurement results and comparison with predictions will be presented.

Visualization of Electromagnetic Waves
George Cheng (Allwave Corporation),Jan Grzesik (Allwave Corporation), Yong Zhu (Allwave Corporation), November 2008

We introduce a new way to visualize electromagnetic waves. The sum total of wave information, essentially everywhere save for the source current distribution, can be determined from just a single data bank acquired across a near-field surface. The waves can be recovered and displayed in terms of their intensity or phase differential over the entire region of interest. A field mapping algorithm is proposed which obtains the field everywhere, both interior and exterior to the measurement surface, based on a single near-field data acquisition. The field mapping algorithm is a direct, closedform solution which is numerically straightforward and efficient. Verification is demonstrated by analytic examples, numerical simulation results, and hardware measurement. Excellent agreement is evident in all cases.

Microwave holography as diagnostic tool: an application to the GALILEO Navigation antenna
Luca Salghetti Drioli (ESA – ESTEC) ,Cyril Mangenot (ESA – ESTEC), November 2008

This paper describes an application of well known microwave holography to the practical case of the space antenna for the European Navigation System GALILEO. The antenna consists in an array of 45 patch elements, divided into six sectors, fed by a two level beam forming network. In fact, the procedure described in this paper has been used in the frame of the development of the GALILEO Navigation antenna to identify element feeding errors. A planar hologram on the aperture plane of the array has been obtained by a set of spherical near field measurements. Sampling the resulting aperture field distribution (in amplitude and phase) allowed reconstructing the excitation law and identifying errors. The developed procedure was validated with a number of test cases assessing numerical errors introduced by the process. Applying the back-projection to the measured far-field led to discover that some sectors of the array were overfed and that errors were present in the central power divider responsible of the first power distribution in the antenna. A new power divider was then manufactured and integrated into the array leading to a well performing antenna.

Generation of a pseudo time domain holography from frequency swept measurements
Javier Marti-Canales (European Space Agency),L.P. Ligthart (Technical University of Delft), November 2008

This paper presents the methodology to generate a pseudo time domain holography from frequency swept measurements. This is an approximation to the time domain holography (TDH) invented by the authors [1,2], which opens a new possibility for antenna diagnostics using conventional instrumentation and in the absence of time domain measurements. Practical examples using two spaceborne antennas are provided and discussed.

Quality Analysis and Comparisons of Radar Reflectivity InformationTypes
B.R. Kurner (AFIOC), November 2008

This paper describes or deals with a quality analysis and comparison of three radar reflectivity information or data types. The information or data types include radar cross section (RCS) as defined by IEEE Standard 100, the bowtie sector average, and the gross estimate radar return (commonly known as the fuzzball). The paper discusses the uncertainty analysis of measured RCS, and the paper provides analysis on the uncertainty of bowtie sector averages and “fuzzballs” (gross estimate radar returns). The comparison of the information or data types, their quality, uncertainties, and usefulness represents a significant part and focus of the study.

A NEURAL NETWORK TECHNIQUE FOR FAULT DETECTION IN PLANAR ARRAYS USING RBF AND PNN ARCHITECTURES
Damera Vakula (National Institute of Technology),N. V. S. N. Sarma (National Institute of Technology), November 2008

In this paper a method to identify faulty elements in a planar array using Artificial Neural Networks (ANN) is presented. The input to the neural network is amplitude of deviation pattern and output of neural network is the location of faulty elements. A planar array of 5×5 number of isotropic elements with uniform excitation and spacing ?/2 is considered. Either one faulty element or two faulty elements can exist in the array. The network is trained with some of the possible faulty deviation patterns and tested with various measurement errors. ANN is implemented with Radial Basis Function neural network (RBF) and Probabilistic neural network and their performance is compared.

NEAR-FIELD TO QUASI-FAR-FIELD TRANSFORM THROUGH PARALLAX
L. Sheffield (STAR Dynamics Corporation), November 2008

Practical ISAR measurements must often be made in the near-field. Scatterers are illuminated by a spherical wavefront, generating a continuum of incident angles due to parallax. Ignoring this, radar image processing produces geometrically distorted images whose utility diminishes the more deeply into the near-field the measurements are made. The underlying assumption that a target may be accurately modeled as a collection of isotropic point scatterers can enormously widen in angle. Yet, by considering parallax (with attention to phase), near-field measurements can produce quasi-far-field images, whose Fourier transform bears a greater likeness to a far-field RCS signature. A technique is presented and explored whereby each image pixel is focused at angles normal to the incident spherical wavefront by compensating for parallax. The focused coordinates are spatially variant, but for a pixel exactly containing a point scatterer, the resulting focused IQ pairs are identical with those in the far-field.

Advances of the Source Reconstruction Method and its applications for the diagnostics of antennas of arbitrary geometry
Yuri Alvarez Lopez (Universidad de Oviedo),Marcos Rodriguez Pino (Universidad de Oviedo), Fernando Las-Heras (Universidad de Oviedo), November 2008

An Integral Equation-based method for Near-to-Far Field Transformation method and antenna diagnostics is presented. This technique, called the Sources Reconstruction Method (SRM) makes use of the Equivalence Principle jointly to the Integral Equations in order to find an equivalent problem so that the fields radiated by the original problem and by the equivalent one are the same. While most of the antenna diagnostics techniques limit their application to canonical geometries (planar, cylindrical, spherical), the SRM extends the diagnostics capabilities to arbitrary geometries. Thus, if the surface where the equivalent electromagnetic currents are reconstructed fits the Antenna-Under-Test (AUT) geometry it is possible to diagnose the fields and currents distribution over the AUT surface. This generalization for arbitrary geometries increases the SRM computational cost if compared to other diagnostics methods. The paper describes the latest SRM improvements, which are mostly related to the computational cost reduction by means of the Fast Multipole Method (FMM). Examples showing the SRM capabilities for antenna diagnostics are included.

CHARACTERISTIC IMPEDANCE ANALYSIS OF A SLOT LINE WITH THE USE OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
Mustafa Turkmen (Erciyes University),Celal Yildiz (Erciyes University), Kerim Guney (Erciyes University), Sabri Kaya (Erciyes University), November 2008

The slot line, a transmission line suitable for application to microwave integrated circuits, may be used in place of or in association with microstrip. This paper presents an alternative method based on the adaptive neuro-fuzzy inference system (ANFIS) for computing the characteristic impedances of slot lines. The ANFIS is a class of adaptive networks which are functionally equivalent to fuzzy inference systems. The ANFIS has the advantages of the expert knowledge of the fuzzy inference system and the learning capability of neural networks. Different optimization algorithms, hybrid learning, genetic, simulated annealing, and least-squares, are used to determine optimally the design parameters of the ANFIS. The algorithm performances for the optimization of the ANFIS model parameters are compared with each other. The results of ANFIS are compared with the results of a commercial electromagnetic simulator IE3D and closed form expressions (CFE) obtained by curve fitting technique to the numerical results.

FIELD ESTIMATION AND ASSESSING ACCURACY IN COMPLEX RF ENVIRONMENTS
Ivor L. Morrow (Cranfield University),A. W. Wraight (QinetiQ), November 2008

A novel technique for estimating the spatial electromagnetic field distribution and its covariance error is presented based on variogram analysis and the statistical interpolation technique known as Kriging. The spatial structure of some field measurements are characterized by variogram analyses and their propagation properties identified. The physical implications of the Kriging interpolator functional fit to measured data is considered and illustrated. It is concluded that with specialist interpretation this new technique can be used as a valuable checking tool, or to reduce the number of field measurement, in a measurement programme, particularly when the costs of the latter are considered.

Measurements and Calibrations on the Larger Squat Cylinders
Pax Wei (The Boeing Company),A. W. Reed (The Boeing Company), C. N. Ericksen (The Boeing Company), R. K. Schuessler (The Boeing Company), November 2008

RCS measurements of two larger squat cylinders (with dia. 18” and 15”) have been studied. Numerical extrapolation from the best available MoM-simulation is used to generate the finer oscillations (< 0.1 dB) in RCS-PO at higher frequencies. Though the uncertainties at 0.4 dB would obscure the opportunity for a comparison at this time, a smoothly silver-painted surface did yield error bars at 0.2 dB for the Ku-band.

Focal-Plane Scanner for Measuring Radome Beam Deflection in a Compact Range
Scott T. McBride (MI Technologies), November 2008

Measurement of radome beam deflection and/or Boresight shift in a compact range generally requires a complicated set of positioner axes. One set of axes usually moves the radome about its system antenna while the system antenna remains aligned close to the range axis. Another set of axes is normally required to scan the system antenna through its main beam (or track the monopulse null) in each plane so the beam pointing angle can be determined. The fidelity required for the beam pointing angle, combined with the limited space inside the radome, usually make this antenna positioner difficult and expensive to build. With a far-field range, a common approach to the measurement of beam deflection or Boresight shift uses a down-range X-Y scanner under the range antenna. By translating the range antenna, the incident field's angle of arrival is changed slightly. Because the X-Y position errors are approximately divided by the range length to yield errors in angle of arrival, the fidelity required of the X-Y scanner is not nearly as difficult to achieve as that of a gimbal positioner for the system antenna. This paper discusses a compact-range positioner geometry that approximates the simplicity of the down-range-scanner approach commonly used on far-field radome ranges. The compact-range feed is mounted on a small X-Y scanner so that the feed aperture moves in a plane containing the reflector's focal point. Translation in this 'focal plane' has an effect very similar to the X-Y translation on a far-field range, altering the direction of arrival of the incident plane wave. Measured and modeled data are both presented.

A HIGH PERFORMANCE LOW FREQUENCY COMPACT RANGE FEED
John Aubin (ORBIT/FR Inc.),M. Winebrand (ORBIT/FR Inc.), November 2008

A large single reflector corner fed rolled edge compact range system, featuring an elliptical cylinder 12’ (H) x 16’ (W) x 16’ (L) quiet zone has been recently installed in a large anechoic chamber [1]. The Compact Range System parameters, such as reflector surface tolerance of better than 0.001” over the Quiet Zone section of the reflector and superior Quiet Zone field performance at frequencies down to 1.0 GHz were verified and validated. As a part of further studies of potential advantages delivered by the compact range system, the study of the compact range application to Antenna and RCS measurements at VHF/UHF frequencies was initiated. Though the reflector surface tolerance is not an issue at the VHF/UHF bands, successful compact range operation at these frequencies would be a significant expansion of the capabilities of the existing compact range system. In order to evaluate the system performance at VHF/UHF frequencies a number of challenging technical issues had to be resolved and performed. They include: Compact Range Quiet Zone Performance Analysis at the VHF/UHF bands Choice of a concept for a broadband feed suitable for the application and installation within the existing feed carousel Feed Design and Performance Validation Feed Installation in the existing feed carousel Quiet Zone Field Probing and Performance Verification All these issues were addressed in the development of a suitable low frequency feed, and are described in more detail below.

HIGH ACCURACY COMPACT RANGE ANTENNA MEASUREMENT FACILITY
G.Pinchuk (Orbit/FR-Eng),Y. Bitton (Orbit/FR-Eng), Bernhard Priemer (Orbit/FR-Europe), Marcel Boumans (Orbit/FR-Europe), Seong-Soo Kim (ACE Antenna), November 2008

Orbit/FR has installed a new compact range for antenna measurements at ACE Antenna Corp. The measurement facility covers a frequency range from 0.8 to 40GHz with a Quiet Zone size of 3 m diameter x 3 m length. The design of the compact range is similar to the one already installed by Orbit/FR at Ericsson (Sweden) with some improvements in the mechanical design and in the system parameters. An intensive simulation of the reflector serrations had allowed for finding its optimal profile, thus improving the quiet zone parameters at entire frequency range, especially at low frequencies, at which a number of base-station and mobile antennas are expected for testing by ACE Antenna Corp. A new design of a feed positioner and a baffle house added more convenience for the compact range alignment and operation. The system was installed and qualified in March 2008. The field probing has been performed within the entire operating frequency range, which then allows for evaluation of the antenna measurement accuracy. A system description as well as results of simulation and excerpt of the qualification data is presented in the paper.

Compact Range Evaluation by GTD Modelling
F. Jensen (TICRA),Per Heighwood Nielsen (TICRA), November 2008

A compact antenna test range has been analysed for stray signals. The analysis is based on GTD ray trac-ing, i.e. obeying the reflection law in the chamber walls and assuming straight edges of reflectors and walls. Comparisons to an RCS as well as a time-domain measurement of the quiet-zone performance show good agreements with respect to identification of the ray paths of the stray signals. Rough estimates of the power loss at reflections and diffractions show acceptable agreements with the measured levels.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30