AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

Dual Polarized Near Field Probe Based on OMJ in Waveguide Technology Achieving More Than Octave Bandwidth
Lars Jacob Foged,Andrea Giacomini, Roberto Morbidini, Vincenzo Schirosi, Sergey Pivnenko, November 2014

In classical probe-corrected spherical near-field measurements, one source of measurement errors, not often given sufficient consideration is the probe [1-3]. Standard near-field to far-field (NFFF) transformation software applies probe correction with the assumption that the probe pattern behaves with a µ=±1 azimuthal dependence. In reality, any physically-realizable probe is just an approximation to this ideal case. Probe excitation errors, finite manufacturing tolerances, and probe interaction with the mounting interface and absorbers are examples of errors that can lead to presence of higher-order spherical modes in the probe pattern [4-5]. This in turn leads to errors in the measurements. Although probe correction techniques for higher-order probes are feasible [6], they are highly demanding in terms of implementation complexity as well as in terms of calibration and post-processing time. Thus, probes with high azimuthal mode purity are generally preferred.   Dual polarized probes for modern high-accuracy measurement systems have strict requirements in terms of pattern shape, polarization purity, return loss and port-to-port isolation. As a desired feature of modern probes the useable bandwidth should exceed that of the antenna under test so that probe mounting and alignment is performed only once during a measurement campaign. Consequently, the probe design is a trade-off between performance requirements and usable bandwidth. High performance, dual polarized probe rely on balanced feeding in the orthomode junction (OMJ) to achieve good performance on a wide, more than octave, bandwidth [5-7]. Excitation errors of the balanced feeding must be minimized to reduce the excitation of higher order spherical modes. Balanced feeding on a wide bandwidth has been mainly realized with external feeding network and the finite accuracy of the external components constitutes the upper limits on the achievable performance.     In this paper, a new OMJ designed entirely in waveguide and capable of covering more than an octave bandwidth will be presented. The excitation purity of the balanced feeding is limited only by the manufacturing accuracy of the waveguide. The paper presents the waveguide based OMJ concept including probe design covering the bandwidth from 18-40GHz using a single and dual apertures. The experimental validation is completed with measurements on the dual aperture probe in the DTU-ESA Spherical Near-Field facility in Denmark.       References: [1]Standard Test Procedures for Antennas, IEEE Std.149-1979 [2]Recommended Practice for Near-Field Antenna Measurements, IEEE 1720-2012 [3]J. E. Hansen (ed.), Spherical Near-Field Antenna Measurements, Peter Peregrinus Ltd., on behalf of IEE, London, UK, 1988 [4]L. J. Foged, A. Giacomini, R. Morbidini, J. Estrada, S. Pivnenko, “Design and experimental verification of Ka-band Near Field probe based on wideband OMJ with minimum higher order spherical mode content”, 34th Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2012, Seattle, Washington, USA [5]L. J. Foged, A. Giacomini, R. Morbidini, “Probe performance limitation due to excitation errors in external beam forming network”, 33rd Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2011, Englewood, Colorado, USA [6]T. Laitinen, S. Pivnenko, J. M. Nielsen, and O. Breinbjerg, “Theory and practice of the FFT/matrix inversion technique for probe-corrected spherical near- eld antenna measurements with high-order probes,” IEEE Trans. Antennas Propag., vol. 58, no. 8, pp. 2623–2631, Aug. 2010. [7]L. J. Foged, A. Giacomini, R. Morbidini, "Wideband dual polarised open-ended waveguide probe", AMTA 2010 Symposium, October, Atlanta, Georgia, USA. [8]L. J. Foged, A. Giacomini, R. Morbidini, “ “Wideband Field Probes for Advanced Measurement Applications”, IEEE COMCAS 2011, 3rd International Conference on Microwaves, Communications, Antennas and Electronic Systems, Tel-Aviv, Israel, November 7-9, 2011.

Dual Polarized Wideband Feed with Cross-Polarization Reduction and Compensation Properties for Compact Antenna Test Range
Lars Jacob Foged,Andrea Giacomini, Antonio Riccardi, Roni Braun, Gennady Pinchuk, Marcel Boumans, Per Olav Iversen, November 2014

In Compact Antenna Test Range (CATR) applications, better cross polar discrimination is often the main motivation for choosing the more complex and expensive compensated dual reflector system as opposed to the simpler and cheaper single reflector system. Other than reflector geometry adjustment, different options have been presented in the literature to improve the cross polar performance of the single reflector CATR [1-4]. One solution is the insertion of a polarization selective grid between the feed and the reflector. The shape of the grids curved strip geometry is determined from the geometry of the reflector and each polarization has a different shape. This approach has been demonstrated to provide Quit Zone (QZ) cross polar performances similar to the dual reflector system on a decade bandwidth. The drawback of this solution is that orthogonal polarizations components cannot be measured simultaneously since a different polarizer grid is required for each polarization [1-2]. Other techniques aim at improving both amplitude/phase taper and cross polarization are based on measurement post processing. Processing techniques have been proposed based on numerical modelling of the range [3] or by de-convoluting the measured pattern with a predetermined range response based on QZ probing [4]. The drawback of these methods are the finite accuracy of the post processing, increased measurement complexity and the difficulty to measure active antenna systems.  Recently, the application of conjugated matched feeds for reflector systems aimed at cross polar reduction in space application have received attention in the literature [5-10]. Recognizing, that the cross polar contribution induced by the offset reflector geometry has a focal plane distribution very similar to the higher order modes in feed horns, various techniques have been devised to excite compensating feed modes. Although a very elegant technique, the achievable bandwidth is limited and only single polarized solutions have been presented. A different concept of conjugated matched excitation, overcoming the dual polarization limitation has been introduced in [11-12] based on a patch array feed system. However, this implementation is aimed at applications with different beam-width in the principle planes.       In this paper we will introduce a new feed horn concept, based on conjugate matched feeding, aiming at cross polar cancellation in single reflectors CATR systems. The proposed feed system is dual polarized and has an operational bandwidth of 1:1.5. The feed concept is introduced and the demonstrator hardware described. The target QZ <40dB cross polar discrimination is demonstrated by QZ probing of a standard single reflector CATR.  References: [1] C. Dragone, "New grids for improved polarization diplexing of microwaves in reflector antennas," Antennas and Propagation, IEEE Transactions on , vol.26, no.3, pp.459-463, May 1978 [2] M.A.J. Griendt, V.J. Vokurka, “Polarization grids for applications in compact antenna test ranges”, 15th Annual Antenna Measurement Techniques Association Symposium, AMTA, October 1993, Dallas, Texas [3] W. D. Burnside, I. J. Gupta, "A method to remove GO taper and cross-polarization errors from compact range scattering measurements," ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), June 1989, San Jose, California [4] D. N. Black and E. B. Joy, “Test zone eld compensation,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 43, no. 4, pp. 362–368, Apr. 1995. [5] K. K. Shee, and W. T. Smith, “Optimizing Multimode Horn Feed Arrays for Offset Reflector Antennas Using a Constrained Minimization Algorithm to Reduce Cross Polarization”, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, No. 12, December 1997, pp. 1883-1885. [6] S. B. Sharma, D. Pujara, Member, S. B. Chakrabarty,r.  Dey, "Cross-Polarization Cancellation in an Offset Parabolic Reflector Antenna Using a Corrugated Matched Feed", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 8, 2009, pp. 861-864. [7] S. B. Sharma, D. A. Pujara, S. B. Chakrabarty, and V. K. Singh, “Improving the Cross-Polar Performance of an Offset Parabolic Reflector Antenna Using a Rectangular Matched Feed”, IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 8, 2009, pp. 513-516. [8] S. K. Sharma, and A. Tuteja, “Investigations on a triple mode waveguide horn capable of providing scanned radiation patterns”, ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), July 11-17, 2010 [9] K. Bahadori, and Y. Rahmat-Samii, “Tri-Mode Horn Feeds Revisited: Cross-Pol Reduction in Compact Offset Reflector Antennas”, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 57, No. 9, September 2009. [10] Z. Allahgholi Pour, and L. Shafai, “A Simplified Feed Model for Investigating the Cross Polarization Reduction in Circular- and Elliptical-Rim Offset Reflector Antennas”, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, No. 3, March 2012, pp. 1261-1268. [11] R. Mizzoni, G. Orlando, and P. Valle, “Unfurlable Reflector SAR Antenna at P-Band”, Proc. of EuCAP 2009, Berlin, Germany. [12] P. Valle, G. Orlando, R. Mizzoni, F. Heliere, K. van ’t Klooster, “P-Band Feedarray for BIOMASS”, Proc. of EuCAP 2012, Prague, Czech Republic.

The Missing Link between Numerical Simulation and Antenna Measurements with Application to Flush Mounted Antennas
Lars Jacob Foged,Lucia Scialacqua, Francesco Saccardi, Francesca Mioc, Davide Tallini, Emmanuel Leroux, Ulrich Becker, Javier Leonardo Araque Quijano, Giuseppe Vecchi, November 2014

Numerical modeling within Computational Electromagnetics (CEM) solvers is an important engineering tool for supporting the evaluation and optimization of antenna placement on larger complex platforms. While measurements are still required for final validation due to the conclusiveness and high reliability of measured data, numerical modeling is increasingly used in the initial stages of antenna placement investigation, optimization and to ensure that final testing, often a complex procedure, has a positive outcome. In some cases, the full-wave representation of the source antenna is unavailable to the designer in the format required by the CEM solver. This is often the case if the source antenna is from a third party. To overcome this problem, an equivalent computational model of the antenna must be constructed, bearing in mind that CEM solvers require an accurate source representation to achieve reliable results. Equivalent sources or currents implemented in the commercial tool INSIGHT have been adopted as an efficient diagnostics and echo reduction tool in general antenna measurement scenarios as discussed in [1-6]. The INSIGHT processing of measured antenna data was initially developed as a numerical representation of antennas in complex environment analysis for CEM solvers [7-10]. The main obstacle for widespread use of this method was the handling of the proprietary format of the equivalent currents. Commercial CEM providers are currently investigating and implementing domain decomposition techniques based on the near field description of the local domain. This development also provides a direct link between INSIGHT processing of measured antenna data and numerical simulation opening a range of interesting applications for using measured antennas in commercial numerical simulation tools as discussed in [11-12]. In flush-mounted antenna applications the measurement and subsequent INSIGHT processing has to be carefully performed. This paper discusses guidelines for the correct source antenna measurement, post processing and successive link to the commercial numerical tools for simulation. Application examples of the link using CST STUDIO SUITE® software [14-17] with flush mounted antennas and comparison with measurements of the full structure will be provided.  [1]     http://www.satimo.com/software/insight [2]     J. L. Araque Quijano, G. Vecchi. Improved accuracy source reconstruction on arbitrary 3-D surfaces. Antennas and Wireless Propagation Letters, IEEE, 8:1046–1049, 2009. [3]     J. L. A. Quijano, G. Vecchi, L. Li, M. Sabbadini, L. Scialacqua, B. Bencivenga, F. Mioc, L. J. Foged "3D spatial filtering applications in spherical near field antenna measurements", AMTA 2010 Symposium, October, Atlanta, Georgia, USA. [4]     L. Scialacqua, F. Saccardi, L. J. Foged, J. L. Araque Quijano, G. Vecchi, M. Sabbadini, “Practical Application of the Equivalent Source Method as an Antenna Diagnostics Tool”, AMTA Symposium, October 2011, Englewood, Colorado, USA [5]     J. L. Araque Quijano, L. Scialacqua, J. Zackrisson, L. J. Foged, M. Sabbadini, G. Vecchi “Suppression of undesired radiated fields based on equivalent currents reconstruction from measured data”, IEEE Antenna and wireless propagation letters, vol. 10, 2011 p314-317. [6]     L. J. Foged, L. Scialacqua, F. Mioc,F. Saccardi, P. O. Iversen, L. Shmidov, R. Braun, J. L. Araque Quijano, G. Vecchi" Echo Suppresion by Spatial Filtering Techniques in Advanced Planar and Spherical NF Antenna Measurements ", AMTA Symposium, October 2012, Seattle, Washington, USA [7]     E. Di Giampaolo, F. Mioc, M. Sabbadini, F. Bardati, G. Marrocco, J. Monclard , L. Foged, “Numerical modeling using fast antenna measurements”, 28th ESA Antenna Workshop on Space Antenna Systems and Technologies, June 2005 [8]     L. J. Foged, F. Mioc, B. Bencivenga, E. Di Giampaolo, M. Sabbadini “High frequency numerical modeling using measured sources”, IEEE Antennas and Propagation Society International Symposium, July 9-14, 2006. [9]     F. Mioc, J. Araque Quijano, G. Vecchi, E. Martini, F. Milani, R. Guidi, L. J. Foged, M. Sabbadini, “Source Modelling and Pattern Enhancement for Antenna Farm Analysis”, 30th ESA Antenna Workshop on Antennas for Earth Observation, Science, Telecommunication and Navigation Space Missions, May 2008 ESA/ESTEC Noordwijk, The Netherlands [10]  L. J. Foged, B. Bencivenga, F. Saccardi, L. Scialacqua, F. Mioc, G. Arcidiacono, M. Sabbadini, S. Filippone, E. di Giampaolo, “Characterisation of small Antennas on Electrically Large Structures using Measured Sources and Advanced Numerical Modelling”, 35th Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2013, Columbus, Ohio, USA [11]  L. J. Foged, L. Scialacqua, F. Saccardi, F. Mioc, D. Tallini, E. Leroux, U. Becker, J. L. Araque Quijano, G. Vecchi, “Bringing Numerical Simulation and Antenna Measurements Together”, 8th European Conference on Antennas and Propagation, EuCAP, April 2014, Den Haag, Netherlands [12]  L. J. Foged, L. Scialacqua, F. Saccardi, F. Mioc, D. Tallini, E. Leroux, U. Becker, J. L. Araque Quijano, G. Vecchi “Innovative Representation of Antenna Measured Sources for Numerical Simulations”, IEEE International Symposium on Antennas and Propagation and USNC/URSI, July 2014, Memphis, Tennese, USA [13]  L. J. Foged, B. Bencivenga, F. Saccardi, L. Scialacqua, F. Mioc, G. Arcidiacono, M. Sabbadini, S. Filippone, E. di Giampaolo, “Characterisation of small Antennas on Electrically Large Structures using Measured Sources and Advanced Numerical Modelling”, 35th Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2013, Columbus, Ohio, USA [14]  CST STUDIO SUITE™, CST AG, Germany, www.cst.com [15]  T. Weiland: "RF & Microwave Simulators - From Component to System Design" Proceedings of the European Microwave Week (EUMW 2003), München, Oktober 2003, Vol. 2, pp. 591 - 596. [16]  B. Krietenstein, R. Schuhmann, P. Thoma, T. Weiland: "The Perfect Boundary Approximation Technique facing the big challenge of High Precision Field Computation" Proc. of the XIX International Linear Accelerator Conference (LINAC 98), Chicago, USA, 1998, pp. 860-862. [17]  D. Reinecke, P. Thoma, T. Weiland: "Treatment of thin, arbitrary curved PEC sheets with FDTD" IEEE Antennas and Propagation, Salt Lake City, USA, 2000, p. 26.

Verification of Complex Excitation Coefficients from Measured Space Array Antenna by the Equivalent Current Technique
Luca Salghetti Drioli,Lars Jacob Foged, Lucia Scialacqua, Francesco Saccardi, November 2014

In this paper the inverse-source technique or source reconstruction technique has been applied as diagnostic tool to determine the complex excitation at sub array and single element level of a measured array antenna [1-5]. The inverse-source technique, implemented in the commercially available tool “INSIGHT” [5], allows to compute equivalent electric and magnetic currents providing exclusive diagnostic information about the measured antenna. By additional processing of the equivalent currents the user can gain insight to the realized excitation law at single element and sub-array level to identify possible errors. The array investigated in this paper is intended as part of the European Navigation System GALILEO and is a pre-development model flying on the In-Orbit Validation Element the GIOVE-B satellite. The antenna, developed by EADS-CASA Espacio, consists of 42 patch elements, divided into six sectors and is fed by a two level beam forming network (BFN). The BFN provide complex excitation coefficients of each array element to obtain the desired iso-flux shaped beam pattern [6-7]. The measurements have been performed in the new hybrid (Near Field and Compact Range) facility in the ESTEC CPTR as part of the installation and validation procedure [8]. The investigation has been performed without any prior information of the array and intended excitation. The input data for the analysis is the measured spherical NF data and the array topology and reference coordinate system. References [1]     J. L. Araque Quijano, G. Vecchi. Improved accuracy source reconstruction on arbitrary 3-D surfaces. Antennas and Wireless Propagation Letters, IEEE, 8:1046–1049, 2009. [2]     L. Scialacqua, F. Saccardi, L. J. Foged, J. L. Araque Quijano, G. Vecchi, M. Sabbadini, “Practical Application of the Equivalent Source Method as an Antenna Diagnostics Tool”,  AMTA Symposium, October 2011, Englewood, Colorado, USA [3]     J. L. Araque Quijano, L. Scialacqua, J. Zackrisson, L. J. Foged, M. Sabbadini, G. Vecchi “Suppression of undesired radiated fields based on equivalent currents reconstruction from measured data”, IEEE Antenna and wireless propagation letters, vol. 10, 2011 p314-317. [4]     L. J. Foged, L. Scialacqua, F. Mioc,F. Saccardi, P. O. Iversen, L. Shmidov, R. Braun, J. L. Araque Quijano, G. Vecchi " Echo Suppresion by Spatial Filtering Techniques in Advanced Planar and Spherical NF Antenna Measurements ", AMTA Symposium, October 2012, Seattle, Washington, USA [5]     http://www.satimo.com/software/insight [6]     A. Montesano, F. Monjas, L.E. Cuesta, A. Olea, “GALILEO System Navigation Antenna for Global Positioning”, 28th ESA Antenna Workshop on Space [7]     L.S. Drioli, C. Mangenot, “Microwave holography as a diagnostic tools: an application to the galileo navigation antenna”, 30th Annual Antenna Measurement Techniques Association Symposium, AMTA 2008, Boston, Massachusetts November 2008 [8]     S. Burgos, M. Boumans, P. O. Iversen, C. Veiglhuber, U. Wagner, P. Miller, “Hybrid test range in the ESTEC compact payload test range”, 35th ESA Antenna Workshop on Antenna and Free Space RF Measurements ESA/ESTEC, The Netherlands, September 2013

Investigation of Echo Suppression Effeciency in Spacecrafts Near Field Measurement Scenarios
Luca Salghetti Drioli,Lars Jacob Foged, Lucia Scialacqua, Francesco Saccardi, Francesca Mioc, Sara Burgos, Thomas Kozan, Per Olav Iversen, Lior Shmidov, Roni Braun, November 2014

Measurement post-processing techniques based on spatial filtering have been presented as promising tools for the mitigation of echo’s deriving from the measurement environment in regular Near Field (NF) measurement scenarios [1]. The adaptation of these tools into standard measurement procedures depends on the possibility to demonstrate the real effectiveness in a given measurement scenario. The standard validation approach is to introduce a known disturbance into a measurement scenario and show the efficiency of the techniques in attenuating this disturbance. While highly effective as a functional demonstration of this approach the benefit of the echo reduction on an actual measurement scenario should still be evaluated on a case by case basis.     A hybrid Near Field (NF) system has recently been installed in the existing dual reflector Compact Payload Test Range of ESTEC [2-3]. The installed system has been designed to perform spherical, cylindrical and planar NF measurements. Despite the design effort to optimize the NF system position in the chamber some interaction with the dual reflectors in the range were expected and for the PNF system in particular [4].   During the hybrid system acceptance measurements have been performed on the space array antenna intended as part of the European Navigation System GALILEO. The antenna is a pre-development model flying on the In-Orbit Validation Element, GIOVE-B satellite, developed by EADS-CASA Espacio [5-6]. This L-band antenna is particularly important test case for ESTEC since the PNF system will later be used in the final testing at space craft level on the GALILEO Satellites. This paper presents the preliminary finding of the MV-Echo post processing validation for PNF measurements in the hybrid range. The GALILEO array antenna has been measured in different configuration, with and without echo reduction processing and the results compared. The purpose of the activity was to quantify the benefits of the MV-Echo processing. Since the array is working in circular polarization it was possible to identify the major echo contributions as 2’nd order reflections. References [1]     L. J. Foged, L. Scialacqua, F. Mioc, F. Saccardi, P. O. Iversen, L. Shmidov, R. Braun, J. L. Araque Quijano, G. Vecchi, “Echo Suppression by Spatial Filtering Techniques in Advanced Planar and Spherical NF antenna Measurements”, 34th Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2012, Seattle, Washington, USA [2]     S. Burgos, M. Boumans, P. O. Iversen, C. Veiglhuber, U. Wagner, P. Miller, “Hybrid test range in the ESTEC compact payload test range”, 35th ESA Antenna Workshop on Antenna and Free Space RF Measurements ESA/ESTEC, The Netherlands, September 2013 [3]     S. Burgos, P. O. Iversen, T. Andersson, U. Wagner, T. Kozan, A. Jernberg, B. Priemer, M. Boumans, G. Pinchuk, R. Braun, L. Shmidov, “Near-Field Hybrid Test Range from 400 MHz to 50 GHz in the ESTEC Compact Payload Test Range with RF upgrade for high frequencies”, EUCAP 2014 [4]     Paper on position of NF system in the range – was it astrium that did it? [5]     L.S. Drioli, C. Mangenot, “Microwave holography as a diagnostic tools: an application to the galileo navigation antenna”, 30th Annual Antenna Measurement Techniques Association Symposium, AMTA 2008, Boston, Massachusetts November 2008 [6]     A. Montesano, F. Monjas, L.E. Cuesta, A. Olea, “GALILEO System Navigation Antenna for Global Positioning”, 28th ESA Antenna Workshop on Space [7]     J. E. Hansen, Spherical Near-Field Antenna Measurements, Peter Peregrinus Ltd. On behalf of IEE, London, United Kingdom, 1988. [8]     F. Jensen, A. Frandsen, “On the number of modes in spherical wave expansion”, AMTA Symposium, October 2004, Stone Mountain, GA, USA.

Quiet Zone Analysis Using Spherical Near-Field Scanning Measurements
Marc Dirix,Dirk Heberling, November 2014

Fieldprobing is often the tool of choice for validating the characteristics of a quiet zone (QZ). Some of the main disadvantageous of fieldprobing are the expense and stability of the setup, e.g. a stable non-reflective linear axis has to be build. Furthermore regular 1-dimensional fieldprobing is not very suited for detecting extraneous reflections in the measurement chamber. Former work has shown that using a second linear axis below the AUT positioner (which is sometimes present for Antenna Pattern Comparison (APC) measurements) can improve the detection, but further increases the cost factor. Using Spherical Near-Field scanning [FRANCIS,WITTMANN,BLACK,JOY] most of these disadvantageous are solved, only a rather simple, although sturdy, beam is built on top of the roll-over-azimuth positioner, placing the antenna on a sphere surrounding the QZ. Using only one measurement, for each frequency, a complete analysis of the measurement chamber can be performed. It can be used for both looking inside the QZ, i.e. chamber reflectivity and outside on extraneous reflections. This paper will show both actual spherical near-field and fieldprobing measurements of the CATR at the Institute of High Frequency Technology (IHF) of the RWTH Aachen, and compare both results.

Gimbals for Antenna & Radome Measurement: Demanding Applications Drive Innovative Architecture, Remarkably Higher Accuracy
Mark Hudgens,George Cawthon, November 2014

For the purposes of antenna or radome measurement, a gimbal may be thought of as a compact, two or three axis antenna positioner with mutually orthogonal, intersecting axes.  The unrelenting demand for higher accuracy in positioners of this type is driving innovation in mechanical architecture and design. A new position feedback technique, reflecting an enhanced understanding of position errors, and delivering unprecedented native encoder accuracy, has been developed and tested.  New mechanical architecture has been created that allows for fully-featured two-axis gimbals to exist in the restricted confines behind an aircraft radome.  The principal result of these developments is increasingly accurate and capable systems, particularly in the field of radome measurements.  These new applications, techniques, architectures, and their results are explored in the following pages.

"RF DNA" Fingerprinting for Non-Destructive Antenna Acceptance Testing
Mathew Lukacs,Peter Collins, Michael Temple, November 2014

Abstract- Quality control is critical for all industrial processes, but often times defect detection is labor intensive. A novel approach to industrial defect detection is to use a random noise radar (RNR), coupled with Radio Frequency "Distinctive Native Attributes (RF-DNA)" fingerprinting processing algorithms to non-destructively interrogate microwave devices and classify defective units from properly functioning units.  Example applications include assembly line inspection of automotive collision avoidance systems, wireless or cellular antenna defect detection during manufacture, and phased array element defect detection prior to RF system assembly. The RNR is uniquely suitable since it uses an Ultra Wideband noise waveform as an active interrogation method that will not cause destructive damage to microwave components. Additionally, it has been demonstrated that multiple RNRs can operate simultaneously in close proximity, allowing for significant parallelization of defect detection systems resulting in increased process throughput. Using this method, 100% sampling for quality control may be attainable in many cases. RF-DNA has previously demonstrated “serial number” discrimination of Orthogonal Frequency Division Multiplexed (OFDM), Direct Sequence Spread Spectrum (DSSS) network signals, GSM, WiMAX signals and others with classification accuracies above 80% using Multiple Discriminant Analysis and Generalized Relevance Learning Vector Quantification classification algorithms. Those cases all involved discrimination of passive emissions. This approach proposes to couple the classification successes of the RF-DNA fingerprinting with a non-destructive active interrogation waveform.

Modelling and Simulation of a Resistance Loaded Bow Tie Antenna
Matthew Galdeen,Peter Collins, November 2014

The modelling and simulation of a modified bow tie antenna optimized for radar cross section measurement is described.  The bow tie antenna shows improved transient response for radiating Ultra Wide Band pulses with decreased late time ringing.  In applications such as radar cross section measurement, late time ringing caused by reflections at the open ends can mask objects of interest in close proximity.  The antenna reduces reflections by resistive loading based on works by Lestari and Wu-King.  Full wave modelling and simulation is done using CST Microwave Studio.  S-Parameter and VSWR optimization by modification of the conductivity profile is demonstrated.  Experimental verification of the model has been carried out and confirms both the properties of the antenna and the simulation.

Spherical Near-Field Measurement Results at Millimeter-Wave Frequencies Using Robotic Positioning
Michael Francis,Ronald Wittmann, David Novotny, Joshua Gordon, November 2014

We describe millimeter-wave near-field measurements made with the new National Institute of Standards and Technology (NIST) robotic scanning system. This cost-effective system is designed for high-frequency performance, is capable of scanning in multiple configurations, and is able to track measurement geometry at every point in a scan. We have measured a WR-5 standard gain horn at 183 GHz using the spherical near-field method. We compare these results to a theoretical model and to a direct far-field measurement.

Improved Bandwidth in Rectangular Waveguide Material Characterization Measurements
Michael Havrilla,Andrew Bogle, Milo Hyde, November 2014

Traditional rectangular waveguide measurements are operated in the frequency regime of the dominant TE10 mode.  The general guideline for determining the dominant mode frequency regime is to operate 25% above the TE10 mode cutoff to avoid high dispersion and 5% below the TE20 cutoff to avoid higher-order mode excitation.  The X-band waveguide for example, with cross-sectional dimensions 0.9 inches by 0.4 inches, has a TE10 and TE20 cutoff frequency of 6.56 and 13.12 GHz, respectively.  Using the above guideline, the approximate bandwidth of operation is 8.2-12.4 GHz.  In addition, coax-to-waveguide adapters must be employed in order to connect the network analyzer coaxial cables to the rectangular waveguide sections.  In modern (i.e., commercially off the shelf - COTS) microwave coax-to-waveguide adapters, tuning stubs are employed to minimize voltage standing wave ratio and thus maximize energy coupling into the waveguide sections.  Unfortunately, these tuning stubs are placed in asymmetric patterns that can cause coupling into the TE20 mode, which is the very reason why one must operate at a frequency of at least 5% below this mode to safely avoid higher-order mode contamination.  The goal here is to show that, by designing symmetric coax-to-waveguide adapters, excitation of the TE20 mode can be avoided for operational frequencies above the TE20 cutoff.  Thus, the frequency of operation may be extended to the TE11 mode (the next higher-order mode that can exist) having a cutoff frequency of 16.16 GHz.  Consequently, the operational frequency band is enhanced from 8.2-12.4 GHz to 8.2-15.4 GHz, representing a 70% improvement in operational bandwidth.  A comparison of newly-designed symmetric and COTS asymmetric coax-to-waveguide adapters for material characterization measurements will be provided and advantages/limitations will be discussed.

Antenna Measurement Concept Exploiting Echoes Based on Frequency Diversity
Mouad Djedidi,Florian Monsef, Andrea Cozza, November 2014

Current antenna measurement techniques are based on the underlying idea that echoes generated by nearby structures should be avoided. Indeed, the absence of echoes allows a precise measurement of the line-of-sight radiation of the antenna under test (AUT), via mechanical rotation to span some or all spatial directions until the radiation pattern is formed. In this paper, this idea is challenged by introducing an alternative test approach that generates controlled echoes and use them as a useful source of information. Preliminary results are presented and it is shown how frequency diversity can be fruitfully used to retrieve the free space radiation pattern. A special care is given to the conditioning of the mathematical problem. Accordingly, it is shown how the different parameters involved in the set-up influence the feasibility of the technique. The proposed technique is expected to lead to a faster characterization of the AUT, as the need for mechanical rotation is cut down.

Integral Equation Modelling of Reverberation Chambers using Higher-Order Basis Functions
Oscar Borries,Per Christian Hansen, Peter Meincke, Stig Busk Sørensen, Erik Jørgensen, November 2014

Reverberation chambers (RCs) are important measurement tools, and thus it is often required to simulate their behaviour numerically. However, due to their special characteristics, especially for high Q factors, they are often considered too challenging for application of standard numerical software. In particular, a recent publication [1] listed the perceived state-of-the-art in integral equation modelling of RCs, and identified numerous unsolved problems. The present paper illustrates that using Higher-Order (HO) basis functions in the integral equation discretization can allow the numerical analysis of relatively large RCs to be performed with limited computer resources. Applying a dedicated HO Multi-level Fast Multipole Method scheme allows even larger problems to be solved. After a discussion and brief review of existing methods for RC modelling, we will turn to a description of the key features of HO basis functions and their related MLFMM implementation, focusing on how they allow surpassing some of the challenges faced by lower-order discretizations. Then, several RC test-cases are analyzed, drawing comparisons to other results from the relevant litterature. The conclusion is that with use of HO basis functions and a thorough MLFMM implementation, some of the challenges identified in [1] can be overcome. [1] H. Zhao, “MLFMM-Accelerated Integral-Equation Modeling of Reverberation Chambers,” IEEE Antennas and Propagation Magazine, vol. 55, no. 5, pp. 299–307, Oct. 2013.

Combining Pattern, Polarization and Channel Balance Correction Routines to Improve the Performance of Broad Band, Dual Polarized Probes
Patrick Pelland,Allen Newell, November 2014

Broad band, dual polarized probes are becoming increasingly popular options for use in near-field antenna measurements. These probes allow one to reduce cost and setup time by replacing several narrowband probes like open-ended waveguides (OEWG) with a single device covering multiple waveguide bands. These probes are also ideal for production environments, where chamber throughput should be maximized. Unfortunately, these broadband probes have some disadvantages that must be quantified and corrected for in order to make them viable for high accuracy near-field measurements. Most of these broadband probes do not have low cross polarization levels across their full operating bandwidths and may also have undesirable artifacts in the main component of their patterns at some frequencies. Both of these factors will result in measurement errors when used as probes. Furthermore, the use of a dual port RF switch adds an additional level of uncertainty in the form of port-to-port channel balance errors that must be accounted for. This paper will describe procedures to calibrate the pattern and polarization properties of broad band, dual polarized probes with an emphasis on a newly developed polarization correction algorithm. A simple procedure to measure and correct for amplitude and phase imbalance entering the two ports of the near-field probe will also be presented. Measured results of the three calibration procedures (pattern, polarization, channel balance) will be presented for a dual-polarized, broad band quad-ridged horn antenna. Once calibrated, this probe was used to measure a standard gain horn (SGH) and will be compared to baseline measurements acquired using a good polarization standard open-ended waveguide (OEWG). Results with and without the various calibration algorithms will illustrate the advantage to using all three routines to yield high accuracy far-field pattern data.

60GHz Antenna Measurement Setup Using a VNA without External Frequency Conversion
Paula Irina Popa,Sergey Pivnenko, Jeppe Majlund Nielsen, Olav Breinbjerg, November 2014

The typical antenna measurement system setup working above 20 GHz makes use of frequency multipliers and harmonic mixers, usually working in standard waveguide bands, and thus several parts need to be procured and interchanged to cover several frequency bands. In this paper, we investigate an alternative solution which makes use of a standard wideband VNA without external frequency conversion units. The operational capability of the Planar Near-Field (PNF) Antenna Measurement Facility at the Technical University of Denmark was recently extended to 60 GHz employing an Agilent E8361A VNA (up to 67 GHz). The upgrade involved procurement of very few additional components: two cables operational up to 65 GHz and an open-ended waveguide probe for tests in U-band (40-60 GHz). The first tests have shown good performance of the PNF setup: 50-60 dB dynamic range and small thermal drift in magnitude and phase, 0.06 dB and 6 degrees peak-to-peak deviations over 4 hours. A PNF measurement of a 25 dBi Standard Gain Horn was carried out and the results were compared to those from the DTU-ESA Spherical Near-Field Facility with a good agreement in the validity region. Uncertainty investigations regarding cable flexing effects at 60 GHz have shown that these introduce an uncertainty of about 0.02 dB (1 sigma) around the main beam region indicating a very good performance of the PNF setup.

Indoor RCS measurement facilities ARCHE 3D: Influence of the target supporting mast in RCS measurement
Pierre Massaloux, November 2014

Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern. In order to perform more complete characterizations, a spherical experimental layout has been developed at CEA for indoor Near Field monostatic RCS assessment. This experimental layout is composed of a 4 meters radius motorized rotating arch (horizontal axis) holding the measurement antennas while the target is located on a mast (polystyrene or Plexiglas) mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allows full 3D near field monostatic RCS characterization. This paper investigates the influence of the material of the mast supporting the target under test. Across several measurement steps, we compare different RCS measurement results of canonical targets in order to eliminate the unwanted RCS measurement contribution due to the mast. The aim is to find out the mast which disturbs the least the RCS of the target under test but still compatible with the measurement facility ARCHE 3D. All these measurements are also compared to Near Field and Far Field calculations taking into account the material of the supporting mast.

Field Synthesis Using Multilevel Plane Wave Based Field Transformation
Raimund Mauermayer,Thomas Eibert, November 2014

The synthesis of a specific field distribution in a certain volume with a given set of sources is an issue which arises in acoustics as well as in electromagnetics. Field Synthesis is of increasing interest for over the air (OTA) testing of multiple input multiple output (MIMO) based communication devices as arbitrary multipath communication channels can be simulated synthesizing the corresponding field distribution around the device under test (DUT). Plane-wave Field Synthesis methods have already been applied to improve the quality and extents of the quiet zone region of compact antenna test ranges (CATR). Furthermore, by synthesizing a plane wave field in a test region for an antenna under test (AUT), using an array of probe antennas in its near-field region, near-field far-field transformations (NFFFT) can be performed. Since there exists a variety of important applications for electromagnetic Field Synthesis, a Field Synthesis approach with high flexibility and low computational complexity is presented in this contribution. Usually, depending on the application, a single moving probe antenna or an array of probe antennas is used to synthesize a desired field distribution in the test zone volume where the DUT will be placed. The challenge is to determine appropriate excitation signals for the individual probe antennas. For that purpose an equation system is iteratively solved which arises from the boundary condition for the tangential field components on the surface of the test volume. As a consequence of the uniqueness theorem, equality of the desired and synthesized tangential field components induces that the desired and synthesized field distribution are identical in the source free test volume. Field testing on the surface of the test volume is performed by vector testing functions defined on a triangular mesh of the test zone surface enabling field synthesis in arbitrarily shaped test volumes. For accelerated evaluation of the coupling between probe antennas and vector testing functions, principles of the fast multipole method (FMM) are adopted. The implied plane wave expansions enables to incorporate the radiation characteristic of the probe antenna sources just by directly employing its plane wave spectrum representation which is nothing else but its far-field pattern. Additionally, the multilevel approach minimizes the number of translation operations between source and receiver boxes organized in a hierarchical oct-tree. Altogether the approach is applicable to arbitrarily shaped test volumes and arbitrarily arranged probe antennas and still shows a linearithmic complexity. In this contribution, detailed insight in the Field Synthesis method is given. Results for synthesized field distributions for arbitrarily shaped test volumes are presented. Finally the application of plane-wave Field Synthesis to NFFFT is shown for synthetic as well as for real near-field antenna measurement data.

Evaluating and Verifying the Performance of the Ft. Huachuca Compact Range
Michael Francis,Ronald Wittmann, November 2013

Abstract— The National Institute of Standards and Technology (NIST) presents a plan for evaluating and verifying the performance of the refurbished Ft. Huachuca Antenna Test Facility outdoor compact range. This plan was drawn up based upon information supplied to NIST on the intended applications.

Simulating Antenna Measurements in an Anechoic Chamber
Derek Campbell, November 2013

Abstract— The measurement community has a substantial and increasing interest in utilizing computational electromagnetic (CEM) tools to minimize the financial resources and real estate required to design and construct a custom anechoic chamber without sacrificing performance. Although a full-wave numerical technique provides the most accurate solution, the computational resources can quickly become a hindrance as the electrical size increases with frequency. Fortunately, the assumptions underlying numerical solvers using asymptotic approximations become more valid and therefore more accurate as frequency increases. Simulations using these numerical solvers, available in commercial software such as FEKO [1], extend previous research [2] with a comparison between the power received by an antenna under test (AUT) and a reference antenna in an anechoic chamber across the UHF frequency band. The ability to simulate a measurement technique helps unite the measurement and computational communities by accounting for a variety of potential error sources. The respective antenna gain is then extracted with post-processing and ultimately provides further insight into the performance of anechoic chambers. Without loss of generality, a complete chamber measurement of half-wave dipole antennas at several frequencies has been simulated.

A Technique for Determining the Amplitude Center Location of an End-Fire Antenna in the Near Field
Herbert Aumann,Nuri Emanetoglu, November 2013

The technique is validated with a 14-element printed circuit 2-12 GHz log-periodic antenna with known phase center, and applied to a 4-element printed circuit 2.4 GHz Yagi-Uda antenna with unknown phase center. A conventional phase center deter­mination based on phase curvature and the proposed technique yield substantially the same results. It is shown that the phase center of a Yagi antenna is not located at the feed but is located closer to the center of the physical array.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31