AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

Performance criteria for RCS measurement systems
J. Tavormina (Scientific Atlanta), November 1984

The purpose of an instrumentation radar is to characterize the Radar Cross Section (RCS) of a target as a function of target aspect and radar frequency. In addition, an instrumentation radar may be used to produce a high resolution radar image of a target which is useful in target identification work and as a diagnostic tool in radar cross section reduction. These purposes differ from those of a conventional radar, in which the objective is to detect the presence of a target and to measure the range to the target. Several different radars are currently used to perform radar cross section measurements. Common instrumentation radars may be classified as CW, Pulsed CW (Low-Bandwidth IF), Linear FM (FM-CW), Pulsed (High-Bandwidth IF) and Short Pulse (Very High-Bandwidth IF). These radars accomplish the measurement task in distinct manners, and it is sometimes difficult to determine where the strength or weakness of each radar lies. In this paper, a set of performance criteria is proposed for RCS measurements. The proposed criteria can be applied uniformly to any instrumentation radar independent of the type of radar design employed. The criteria are chosen to emphasize those performance characteristics that relate directly to RCS measurements and thus are most important to the user. Two instrumentation radars which have been designed at Scientific Atlanta, namely the Series 2084 (Linear FM) and the Series 1790 (Pulse), are used to illustrate the application of the performance criteria.

Obtaining bistatic data utilizing a monostatic measurement system
P. Zuzolo (Fairchild Republic), November 1984

A monostatic radar measurement system at the U.S. Navy Pacific Missile Test Center (PACMISTESTCEN) located at Pt. Mugu, California was utilized to obtain incidence angle performance of radar absorbing structure (RAS) panels. The traditional methods of obtaining reflectivity data for absorptive materials over a range of incidence angles is a technique known as the NRL arch. Developed over 30 years ago by the U.S. Naval Research Laboratory, the technique utilizes moveable bistatic antennas on an arch equidistant from the test material panel in order to obtain incidence angle data.

Extraction of narrow band responses for wideband RCS data
D. Mensa (Pac. Miss. Test Cen.), November 1984

Wideband RCS instrumentation systems can provide a high degree of range resolution. By combining wideband RCS data with a synthetic-aperture or Doppler processing, the spatial distribution of radar reflectivity can be determined. These systems provide diagnostic capabilities which are useful for locating scattering sources on complex objects and for assessing the effectiveness of modifications. The Proceedings of the 1983 meeting included a paper which described a linear-FM system operating over a 3 GHz bandwidth capable of measuring RCS vs range, cross range, and frequency using a single measurement set-up. This paper analytically demonstrates a procedure for extracting CW RCS patterns from the wideband data obtained using the linear-FM system. By combining the latter and the former processing, it is possible to obtain from a single data array both wideband responses showing the spatial distribution of scatterers and narrowband responses which are the traditional CW RCS patterns. The paper includes experimental verifications of these assertions by comparing results of CW measured data with data extracted from wideband RCS measurements.

Near field RCS measurements
E.B. Joy (Georgia Institute of Technology), November 1984

A planar surface, near-field measurement technique is presented for the near-field measurement of monostatic radar cross-section. The theory, system configuration and measurement procedure for this technique are presented. It is shown that the far field radar cross-section can be determined from the near field measurements. An associate near-field radar cross-section measurement technique is presented for the measurement of bistatic near field radar cross-section. The bistatic technique requires a plane wave illuminator in addition to the planar surface near field measurement system. A small compact range is used as the bistatic illuminator. Bistatic near-field measurements are presented for a simple target.

Software and hardware for spherical near-field measurement systems
D. W. Hess (Scientific-Atlanta, Inc.),C. Green (Scientific-Atlanta, Inc.), B. Melson (Scientific-Atlanta, Inc.), J. Proctor (Scientific-Atlanta, Inc.), J. Jones (Scientific-Atlanta, Inc.), November 1984

The following features have been added to the spherical near-field software set which is available for the Scientific-Atlanta 2022A Antenna Analyzer. Gain Comparison Measurement Probe Pattern Measurement and Correction Thermal Drift Correction Spherical Modal Coefficient Analysis Far-Field, Radiation Intensity, and Polarization Display The addition of the probe pattern correction permits antenna measurements to be made at range lengths down to within several wavelengths of touching. The addition of probe polarization measurement permits three antenna polarization measurements to be made and analyzed as well as two antenna polarization transfer measurements. Correction for phase and amplitude errors attributable to thermal drift is accomplished by the return-to-peak method. Reduction of antenna patterns to spherical modal coefficients is an essential feature of spherical near-field to far-field transforms and is offered as an augmentation to antenna design. Far field display features permit the far fields of antennas to be presented in both component and radiation intensity formats, in circular, linear and canted linear polarization components.

The Determination of near-field correction parameters for circularly polarized probes
A. C. Newell (Electromagnetic Fields Division),D. P. Kremer (Electromagnetic Fields Division), M.H. Francis (Electromagnetic Fields Division), November 1984

In order to accurately determine the far-field of an antenna from near-field measurements the receiving pattern of the probe must be known so that the probe correction can be performed. When the antenna to be tested is circularly polarized, the measurements are more accurate and efficient if circularly polarized probes are used. Further efficiency is obtained if one probe is dual polarized to allow for simultaneous measurements of both components. A procedure used by the National Bureau of Standards for determining the plane-wave receiving parameters of a dual-mode, circularly polarized probe is described herein. First, the on-axis gain of the probe is determined using the three antenna extrapolation technique. Second, the on-axis axial ratios and port-to-port comparison ratios are determined for both the probe and source antenna using a rotating linear horn. Far-field pattern measurements of both amplitude and phase are then made for both the main and cross components. In the computer processing of the data, the on-axis results are used to correct for the non-ideal source antenna polarization, scale the receiving coefficients, and correct for some measurement errors. The plane wave receiving parameters are determined at equally spaced intervals in k-space by interpolation of the corrected pattern data.

Preliminary development of a phased array near field antenna coupler
D. D. Button (Sanders Associates, Inc.), November 1984

End-to-end testing of electronic warfare (EW) equipment at the organizational or flight lines level is accomplished by use of an antenna coupler which is placed over the EW system antenna. The coupler is used to inject a stimulus signal simulating a signal emanating from a distant radar, and to receive and detect the EW system response (EW transmit) signal. The coupler is used to determine the EW receiver sensitivity over a swept frequency coverage and the EW transmit gain and effective radiated power (ERP) versus frequency characteristics, as well as to determine the operating integrity of the EW antenna and transmission lines.

Broad band feeds for new RCS ranges
K.S. Kelleher, November 1984

Recent construction of RCS ranges has involved paraboloidal reflectors ranging from a few feet to sixty feet in diameter. These reflectors have required broad band feeds because the typical radar illuminator-receiver is capable of operating over an octave in frequency. This paper will describe a series of feeds which cover any octave in frequency from 100 mHz to 8 gHz, with coaxial line inputs. In addition waveguide-port feeds will be described which cover all of the standard waveguide bands up to 18 gHz. The four basic requirements for all of these feeds are: a) capable of handling the radar power, b) VSWR less than 2 to 1, c) orthomode operation with a 30 db isolation between the two linear polarizations and d) a radiation pattern which is constant with frequency. A fifth problem, for the reflectors which are truncated, is that of providing an elliptical cross section beam over the frequency band.

Effects of the alignment errors on ahorn's crosspolar pattern measurements. Application to L-SAT propagation package antennas.
M. Calvo (Universidad Potitecnica de Madrid),J.L. Besada (Universidad Potitecnica de Madrid), November 1984

When low crosspolar pattern measurements are required, as in the case of the L-SAT Propagation Package Antennas (PPA) with less than -36 dB linear crosspolarization inside the coverage zone, the use of good polarization standards is mandatory (1). Those are usually electroformed pyramidal horns that produce crosspolar levels over the test zone well below the -60 dB level typically produced by the reflectivity of anechoic chambers. In this case the alignment errors (elevation, azimuth and roll as shown in fig. 1) can become important and its efects on measured patterns need to be well understood.

Ultra low sidelobe testing by planar near field scanning
K. R. Grimm (Technology Service Corporation), November 1984

An innovative technique has been developed for accurately measuring very low Sidelobe Antenna patterns by the method of planar near field probing. The technique relies on a new probe design which has a pattern null in the direction of the test antenna’s steered bean direction. Simulations of the near field measurement process using such a probe show that -60dB peak side-lobes will be accurately measured (within established bounds) when the calibrated near field dynamic range does not exceed 40 dB. The desireable property of the new probe is its ability to “spatially filter” the test antenna’s spectrum by reduced sensitivity to main beam ray paths. In this way, measurement errors which usually increase with decreasing near field signal level are minimized. The new probe is also theorized to have improved immunity to probe/array multipath and to probe-positioning errors. Plans to use the new probe on a modified planar scanner during tests with the AWACS array at the National Bureau of Standards will be outlined.

Characteristics and Capabilities of the Lewis Research Center high precision 6.7- by 6.7-M planar near-field scanner
G.R. Sharp (NASA),C.A. Raquet (NASA), R.E. Alexovich (NASA), R.J. Zakrajsek (NASA), R.R Kunath (NASA), November 1984

The development of advanced spacecraft communication antenna systems is an essential part of NASA’s satellite communications base research and technology program. The direction of future antenna technology will be toward antennas which are large, both physically and electrically; which will operate at frequencies of 60 GHz and above; and which are nonreciprocal and complex, implementing multiple beam and scanning beam concepts that use monolithic semiconductor device technology. The acquisition of accurate antenna performance measurements is a critical part of the advanced antenna research program and represents a substantial antenna measurement technology challenge, considering the special characteristics of future spacecraft communications antennas.

A Figure of merit for evaluating signal processing antennas
E. Jacobs (Aerospace Corporation), November 1984

In recent years a new class of reflector antennas utilizing array feeds has been receiving attention. An example of this type of antenna is a reflector utilizing a moveable array feed for beam steering. [1]-[3]. Due to the circuitry required to adjust the weights for the various feed array elements, an appreciable amount of loss can be introduced into the antenna system. One technique to overcome this possible deficiency is to place low noise amplifiers with sufficient gain to overcome the weighting function losses just after each of the feed elements. In the evaluation of signal processing antennas that employ amplifiers the standard antenna gain measurement will not be indicative of the antenna system’s performance. In fact, by only making a signal measurement, the antenna gain can be made any arbitrary value by changing the gains of the amplifiers used. In addition, the IEEE Standard Test Procedures for Antennas [4] does not cover the class of antennas where the amplifier becomes part of the antenna system. There exists a need to establish a standard of merit or worth for multi-element antenna systems that involve the use of amplifiers. This communication presents a proposed figure of merit for evaluating such antenna systems.

The New ANSI RF Radiation Exposure Standard: Its Background and Impact
D.E. Hudson (Lockheed Aircraft Service Company), November 1984

This presentation will focus on the recently revised ANSI C95 RF Radiation Exposure Standard. Some of the research background for the new standard will be given, and its impact will be explained. Instrumentation guidelines for measuring potentially hazardous fields will be presented. The possible damaging effects of non-ionizing RF radiation is receiving increased attention in the public eye, and it behooves the practicing antenna engineer to be aware of the potential dangers to health and safety from exposure of RF energy.

Rolled edge modification of compact range reflector
W.D. Burnside (Ohio State University),B. M. Kent (Air Force) M. C. Gilreath (NASA), November 1984

The compact range is an electromagnetic measurement system used to simulate a plane wave illuminating an antenna or scattering body. The plane wave is necessary to represent the actual use of the antenna or scattering from a target in a real world situation. Traditionally, a compact range has been designed as an off-set fed parabolic reflector with a knife edge or serrated edge termination. It has been known for many years that the termination of the parabolic surface has limited the extent of the plane wave region or, more significantly, the antenna or scattering body size that can be measured in the compact range. For example, the Scientific Atlanta (SA) Compact Range is specified to be limited to four foot long antennas or scattering bodies as shown in their specifications. Note that the SA compact range uses a serrated edge treatment as shown in Figure 1. This system uses a parabolic reflector surface which is approximately 12 square feet so that most of the reflector surface is not usable based on the 4 foot square plane wave sector. As a result, the compact range has had limited use as well as accuracy which will be shown later. In fact, the compact range concept has not been applied to larger systems because of the large discrepancy between target and reflector size. In summary, the target or antenna sizes that can be measured in the presently available compact range systems are directly related to the edge treatment used to terminate the reflector surface.

The Statistics of measured antenna patterns
G.E. Evans, November 1984

The parameters measured on antennas vary from unit-to-unit depending on the manufacturing and test tolerances. It is often useful to be able to predict the statistical distribution expected in production for properties such as gain or sidelobes based on limited data on a few samples. In this report extensive data from production line antenna testing on several reflector designs was analyzed to determine the nature of the distributions. Although each antenna design is different, there is evidence that useful predictions can be made when the appropriate scale factors are used.

Applications of new 16-bit SD-2000 digital synchro monitors
G.E. Bowie (Lockheed-California Company),M.B. Petri (Petri Associates), November 1984

Progress is reported on use of synchro to digital converter modules. The particular modules applied are 16 bit SDC-361 units, manufactured by ILC Data Device Corporation. Two converters are included in each pf five Model SD-2000 synchro monitors designed and fabricated by Petri Associates and acquired by the Lockheed-California Company for the antenna test facility of the Kelly Johnson R&D Center at Rye Canyon. Applications depended upon learning how Type 23TX6 synchro transmitter pairs in the model towers and elevation-over-azimuth positioners at the facility can be electrically zeroed to match the 16 bit resolution of SDC-361 synchro to digital converters.

A New antenna test facility at General Electric Space Systems Division in Valley Forge, PA.
R. Meier (General Electric Co.), November 1984

This paper describes the new antenna test facility under construction at General Electric Space Systems Division in Valley Forge, PA. The facility consists of a shielded anechoic chamber containing both a Compact Range and a Spherical Near-Field Range. In addition, it provides for a 700’ boresight range through an RF transparent window. The facility will be capable of testing antenna systems over a wide frequency range and will also accommodate an entire spacecraft for both system compatibility and antenna performance tests.

Fourth generation indoor range
K.S. Kelleher, November 1984

The measurement of microwave antennas indoors began with the advent of commercial absorbing material. The use of absorbers can be traced back to a 2 gHz material developed by the Dutch in the Thirties. During the Forties, considerable progress was made on absorbing materials, but even after World War II, security considerations limited the application. Some materials found use as indoor shields for antenna tests, but limited bandwidth limited the utility of these materials. When a broad band absorber was developed the antenna experts did not believe that this material would be made commercially because they presumed a limited market.

Development and evaluation of the 500M ground-reflection antenna test range of the CSIR, Pretoria, South Africa
D. E. Baker (National Institute for Aeronautics and Systems Technology), November 1984

This paper describes the development and evaluation of a general purpose ground-reflection antenna test range operated by the Council for Scientific and Industrial Research (CSIR). The range is 500 m long and the design is such to allow operation in the ground-reflection mode at L, S, and X bands. The physical configuration of the range is presented to illustrate some of the practical problems experienced in implementing the range design. An experimental evaluation programme was conducted to determine the state of the incident field over the test aperture. Some of these results are presented to show the performance achieved with the range design.

Using the HP 8510 network analyzer to measure the radiation patterm of a dipole antenna using time domain and gating to remove the effects of ground clutter
J. W. Boyles (Hewlett-Packard Company), November 1984

A classical problem encountered when measuring the far-field radiation pattern of an antenna in a medium-distance range is the degradation that occurs when undesirable reflections (from the ground or nearby objects) are present. To reduce this problem, the source and test antennas are often installed on towers to remove them from the reflective objects, RF absorptive materials are used to reduce the magnitude of the reflected signals, and often the reflective objects in the range are adjusted in order to null out the reflections and “clean up” the range. These solutions are often limited in their effectiveness and can be prohibitively expensive to implement.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31