AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

Reconstruction of far-field RCS from the RCS measured in near field
S. Shammas (Israel Aircraft Industries),H. Wineberg (Israel Aircraft Industries), S. Shochat (Israel Aircraft Industries), S. Hendler (Israel Aircraft Industries), November 1992

A method has been developed by which the fair-field RCS of a target can be evaluated from its RCS measured in the near field. The method can compensate for the nonuniformity of the antenna pattern which can be a function of the angle, the frequency, and the target distance. A correction transform is evaluated which depends on the antenna pattern, the frequency, the target distance and the target size. The correction transform is independent of the target geometry. The RCS of a target is measured in the near field, in a band of frequencies around the frequency at which the far field RCS of the target is desired. The method can practically handle directional scattering elements, shading of the scattering elements by each other, and interactions among the scattering elements. The reconstructed RCS evaluated by this method shows excellent agreement with the actual far-field RCS.

A Hologram type of compact antenna test range
J. Tuovinen (Helsinki University of Technology),A. Raisanen (Helsinki University of Technology), A. Vasara (Helsinki University of Technology), November 1992

The applications of conventional reflector type compact antenna test ranges (CATR), becomes increasingly difficult above 100 GHz. The main problems are the tight surface accuracy requirements for the reflector, and therefore the high manufacturing costs. These problems can be overcome by the use of a new hologram type of compact range, in which a planar hologram structure is used as a collimating element. This new idea is described, and its performance is studied with theoretical analyses and measurements at 110 GHz.

Characterizing compact range performance for space communication antenna applications
S. Brumley (Boeing Defense and Space Group), November 1992

This paper addresses measurement requirements for space communication antennas and identifies antenna parameters most influenced by indoor compact range quiet zone quality. These parameters include sidelobe level, beam pointing, and gain. The compact range mechanisms limiting measurement accuracy are identified and discussed. Proven methods for characterizing quiet zone performance are described and demonstrated through illustration and example. Analysis is presented which related quiet zone quality characteristics to antenna measurement accuracy. The paper summarizes typical measurement results and error levels achievable for modern compact range systems. Methods for improving compact range performance for satellite antenna testing are also presented.

Estimation of RMS surface error in compact range reflectors
I.J. Gupta (The Ohio State University ElectroScience Laboratory),S.H. Suleiman (The Ohio State University ElectroScience Laboratory), W.D. Burnside (The Ohio State University ElectroScience Laboratory), November 1992

A method to estimate the rms error in the compact range reflector surface is presented. The method uses the target zone field of the reflector and is based on the fact that the random errors in the reflector surface cause energy to subtract from the main beam resulting in reduction of the axial gain. The reduction in the axial gain can be used to estimate the rms error. It is shown that if the target zone fields of the reflector are probed at high frequencies such that the irregularities in the reflector surface are the main source of error in the target zone fields, then the proposed technique gives a good estimate of the rms error in the reflector surface.

Implementation considerations for a compact range array feed
J.P. McKay (University of California at Los Angeles ),F.M. Espiau (University of California at Los Angeles ), Y. Rahmat-Samii (University of California at Los Angeles ), November 1992

Implementation of a two-ring array for feeing a compact range reflector is investigated. The array is designed to produce a shaped beam with a null at the angle corresponding to the rim of a circular-aperture offset paraboloid. Therefore fields diffracted from the reflector rim are reduced and no reflector edge treatment is necessary. The advantages and disadvantages associated with various feed systems are discussed. A dielectric-filled radial transmission line is proposed as a simple, cost effective implementation of the array beam-forming network. Curves for determining the required dielectric constant for null placement at a desired angle are presented. System bandwidth is examined. Methods for impedance matching and suppression of higher order modes in the beam-forming network are proposed.

Study of a broadband feed for a large compact range (defocussed)
J. Matis (McDonnell Douglas Technologies Incorporated), November 1992

This paper presents a study of (Broadband) feeds for a large compact range. Single feeds would be used for an octave or more, in place of 1/2 octave feeds. The study indicates improvement from mounting broadband feeds closer to the subreflector. The McDonnell Douglas Technologies Inc. (MDTI) large compact range uses a Harris 1630 system. The Harris system employs 1/2 octave feedbands. This creates limits for certain measurements. Requirements of the collimator system include fairly constant, relatively high gain feeds (Narrow beamwidth over a broad frequency range.) MDTI made initial studies of various broadband feeds. This study used an AN10F, borrowed from the vendor (GTE Government Systems). The AN10F approximates the required characteristics at its upper frequency range, (upper X - Ku Band). Field probe data taken with the feed installed near the focus of the sub reflector of the Harris collimator confirmed excessive amplitude taper below Ku Band. Further study illustrates the possibility of improved performance with the feed positioned nearer the Sub reflector. (Defocussed)

Semi compact range and its evolution as a fast near-field technique for millimeter-wave applications, The
K.S. Farhat (ERA Technology Ltd., Leatherhead, UK),A.J.T. Whitaker (University of Sheffield, Sheffield, UK), J.C. Bennett (University of Sheffield, Sheffield, UK), N. Williams (ERA Technology Ltd., Leatherhead, UK), November 1992

Increasing use is being made of millimeter-wave systems and there is a need for improved antenna measurement facilities operating at these higher frequencies. Although the practical implementation of compact range and near-field/far-field techniques becomes increasingly difficult, by using a hybrid approach, the attributes of these existing schemes can be exploited and their limitations overcome. The technique uses a linear near-field probe to carry out an instantaneous integration of the field in the date acquisition requirement, together with a quasi-real-time prediction capability. This contribution reviews a number of implementation schemes for the semi-compact antenna test range (SCATR) approach which have been investigated over the past decade and presents the latest results. An implementation of the SCATR with amplitude-only data is presented as an economical and viable method for millimeter-wave frequencies.

Evaluating compact range chamber performance in CSIST
D-C. Chang (Chung Shan Institute of Science and Technology),T.Z. Chang (Chung Shan Institute of Science and Technology), I.J. Fu (Chung Shan Institute of Science and Technology), R.C. Liu (Chung Shan Institute of Science and Technology), November 1992

A 4 foot by 4 foot near field planar scanner is used to evaluate the performance of a SA5751 compact range in CSIST. Using the far field patterns integrated from the scanned aperture fields, the coming directions of the clutters in the chamber can be determined. Often the clutter level is less than the side lobe level of the far field pattern, the scanned field is multiplied by a certain weighting function before integration to pop out the clutter signal. However the weighting method would broaden the main beam and hence clutters coming close along the reflected wave of the reflector are still can not be seen (sic). In this article, a method called main beam suppression, subtracting a constant filed (sic) on the scanned aperture, is introduced to solve this kind of problem and the result shows it serves well for finding those clutters hidden by the main beam and the side lobes nearer to it.

An Ultra-wide bandwidth compact range feed antenna
A.L. Sinopoli (The Ohio State University),M. Gilreath (NASA), W.D. Burnside (The Ohio State University), November 1992

The Slotline/Bowtie Hybrid (SBH) antenna concept has been applied to develop an ultra wide bandwidth feed for compact range applications. The initial design requirements were to develop a feed with a 30 degree 1dB beamwidth from 1 to 18 GHz. It was felt that one could sacrifice the beamwidth at the lower frequencies somewhat because that would reduce the feed spill over which is normally the worst at lower frequencies. The resulting antenna has an 18" by 18" aperture and basically meets the bandwidth requirements. In the worst case, it has 2 dB variation across the desired 30" beamwidth. The phase center is relatively constant, and VSWR is basically less than 2:1 from 1 to 18 GHz. Measured and calculated results are shown to illustrate the performance of this new feed antenna. In addition, the measured amplitude and phase patterns have been input to a reflector analysis code to predict the field probe data in the simulated quiet zone. These results clearly show that this new feed performs very well from 1 to 18 GHz.

A Software package for imaging compact ranges using field probe data
S.T. McBride (Georgia Tech Research Institute),J.L. Bradberry (Georgia Tech Research Institute), November 1992

Considerable attention has been paid in recent years to the interpretation of measured field probe data in order to locate and quantify error sources present in the quiet zone of a compact range. This paper describes a new general purpose software package for that analysis. This software has been written to analyze data acquired in a plane-polar configuration. Analysis options include raw data analysis, near-field focusing of single or multiple line cuts, and plane wave spectrum propagation. A graphical user interface gives the operator extensive control over analysis and display parameters. The analysis algorithms used for multiple-cut processing can function with as few as two radial line cuts.

Small compact range rolled edge reflector for multi-beam applications
M. Winebrand (Orbit Advanced Technologies Ltd.), November 1992

The simultaneous illumination of the Quiet Zone by number of beams is helpful and cost-effective for broadband antenna and RCS measurements. For an application such as, for instance, Electronic Warfare development, the use of scanning beam or multiple beams gives more extensive opportunities for designers. When the antenna-under-test is small in size, the lightweight and small single reflector Compact Range is very well suited for the above applications. Such a Compact Range being moved within the test facility (anechoic chamber or outdoor range) provides additional flexibility for the tests. This paper describes the development of a small Compact Range with a rolled edge reflector and a two-foot diameter Quiet Zone. Analysis of the Compact Range is performed for different feed positions, providing the beam scan in elevation and azimuth with respect to on-axis beam.

Recent developments in large compact range designs
J.D. Huff (Scientific-Atlanta, Inc.),B. Smith (Scientific-Atlanta, Inc.), J.H. Cook (Scientific-Atlanta, Inc.), November 1992

This paper reports on the design, fabrication and installation of the first large compact range whose reflector was machined in one piece. The overall size of this reflector is 30 feet high and 43 feet wide and it produces a test zone 18 feet high and 30 feet wide. It features a novel serrated edge design and a unique multi-feed system. This compact range was fabricated under contract to the U.S. Navy and is currently installed at the Pacific Missile Test Range at Pt. Mugu, California.

A High resolution imaging radar for ground-based diagnostic applications
D. Blejer (MIT Lincoln Laboratory),C. Frost (MIT Lincoln Laboratory), H.R. Catalan (MIT Lincoln Laboratory), S. Scarborough (MIT Lincoln Laboratory), November 1992

Lincoln Laboratory has developed a high resolution imaging radar in conjunction with Flam and Russell, Inc. or Horsham, PA. The radar is a highly mobile, ground based system that is capable of two and three-dimensional imaging at very close ranges to a synthetic aperture. The radar is fully coherent from 0.1 to 18 GHz and transmits CW pulses that are stepped in frequency across a preselected bandwidth. High range resolution is achieved by coherently processing the returned signals. The radar is being used for target imaging and for foliage penetration measurements.

An Instrumentation radar system for use in dynamic signature measurements
C.T. Nadovich (Flam & Russell, Inc.),D.R. Frey (Flam & Russell, Inc.), J.F. Aubin (Flam & Russell, Inc.), November 1992

The dynamic, polarization/frequency diverse, Instrumentation Radar System (IRS) described herein combines the features of an X-band radar tracker with a wideband, fully polarimetric coherent data collection system. Mounted in a transportable trailer, the system can be towed to virtually any site to acquire radar signature measurements on moving aircraft. Specifically, this system can collect the complete, polarimetric target scattering matrix as a function of frequency in real time from all three traditional monopulse channels, as well as from the usually terminated diagonal difference channel. The acquired data can be used for multidimensional images, or for studying the characteristics and performance of monopulse trackers following real targets.

Dynamic air-to-air imaging measurement system
R. Harris (METRATEK, Inc.),B. Freburger (METRATEK, Inc.), J. Hollis (The Northrop Corporation), R. Redman (METRATEK, Inc.), November 1992

METRATEK has completed a highly successful program to prove the feasibility of high-resolution, air-to-air diagnostic radar cross section imaging of large aircraft in flight. Experience with the system has proven that large aircraft can indeed be imaged in flight with the same quality and calibration accuracy that can be achieved with indoor and outdoor ranges. This paper addresses the results of those measurements and the Model 100 AIRSAR radar and processing system that were used on this program.

A Portable 3D SAR RCS imaging system
G.B. Melson (GE Aircraft Engines),D.R. Vanderpool (GE Aircraft Engines), November 1992

A portable measurement system has been designed and implemented to produce focused three dimensional RCS images. The Synthetic Aperture Radar (SAR) system was especially designed to operate in harsh physical and cluttered electromagnetic environments. The acquisition system, signal processing and 3D visualization capabilities are discussed and representative data ranging from simple canonical objects to production hardware are presented. The technique meets its design goal in effectively discriminating undesired clutter.

ISAR imaging of aircraft-in-flight using a ground-based radar
A. Jain (Hughes Aircraft Company),I.R. Patel (Hughes Aircraft Company), November 1992

ISAR images and RCS signatures of aircract-in-flight using a ground based and an airborne radar system are presented. The ground-based measurements were at X-band and were of a Mooney 231 aircraft, which flew in a controlled path in both clockwise and counterclockwise orbits, and successiely with gear down, flaps in the take-off position and with the speed brakes up. The air-to-air measurements were made by a radar installed in the nose of the TA-3B aircraft which followed a KC 135 airplane at a range of approximately 450 ft. and traversed a cross-range angle component of (plus or minus) 30(degrees). The data indicates that these systems are useful tools for RCS signature diagnostics of aircraft in flight.

Super resolution radar target imaging of realistic targets
E. Walton (The Ohio State University ElectroScience Laboratory),A. Moghaddar (The Ohio State University ElectroScience Laboratory), I.J. Gupta (The Ohio State University ElectroScience Laboratory), M.W. Tu (The Ohio State University ElectroScience Laboratory), November 1992

Recently, super resolution algorithm have been used in radar target imaging to increase the down range and/or the cross range resolution. In the open literature, however, the super resolution algorithms have been applied to simulated targets or very simple targets measured in a test range. In this paper, the super resolution algorithms, namely the hybrid algorithm and the 2-D linear prediction, are applied to more realistic targets. One of the targets is a flat plate model of the F-117 aircraft. The back-scattered fields of the flat plate model were measured in a compact range. The other target is a Mooney 231 aircraft. The aircraft was flown in a circular pattern approximately 10 miles from the radar. It is shown that the super resolution algorithm can be successfully applied to these targets.

High resolution radar imagery using parametric modeling and data extrapolation
A. Moghaddar (The Ohio State University ElectroScience Laboratory),I.J. Gupta (The Ohio State University ElectroScience Laboratory), November 1992

A microwave diversity imagery based on parametric modeling of back scattered signal versus frequency and aspect is presented. Forward-backward linear prediction is used to compute the model parameters. After stabilizing the corresponding transfer function, data are extrapolated to adjacent frequencies or aspects. Superior range- and/or cross-range resolution can be obtained by using frequency- and/or aspect-extrapolated data. Cross-range resolution can also be enhanced by extrapolating the frequency data and using data at a higher center frequency. For severly (sic) restricted viewing angles, or for small radar bandwidth, the new imagery can significantly improve the image resolution.

Radar cross section matching of various conic base closures using high resolution ISAR imagery
D.W. Cooper (Sandia National Laboratories),J.C. Davis (Information Systems and Research, Inc.), November 1992

This paper describes an effort to evaluate the effect on RCS of base closures on a metallic frustrum at various depths with conducting and electrically isolated plugs. The tests were conducted at Sandia National Laboratories using System Planning Corporation's (SPC) Mark IV radar from 8 to 18 GHz, in the step chirped Inverse Synthetic Aperture Radar (ISAR) mode. Data reduction was performed on Information Systems and Research's workstation using the KNOWBELL software package. The workstation allowed the study of the imagery data in many different modes, which assisted in determining ways to evaluate RCS matching.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31