AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

In flight VHF/UHF antenna pattern measurement technique for multiple antennas and multiple frequencies
J.S. DeRosa,D. Warren, November 1993

The Precision Airborne Measurement System (PAMS) is a flight test facility at Rome Laboratory which is designed to measure in-flight aircraft antenna patterns. A capability which provides antenna pattern measurements for multiple VHF and UHF antennas, at multiple frequencies, in a single flight, has recently been demonstrated. A unique half space VHF/UHF long periodic antenna is used as a ground receive antenna. Computerized airborne and ground instrumentation are used to provide the multiplexing capability. The new capability greatly reduces time and cost of flight testing. The design, construction, and calibration of the half-space log-periodic ground receiving antenna is discussed and the ground and airborne segments of the instrumentation are described.

Effect of spherical measurement surface size on the accuracy of test zone field predictions, The
D.N. Black,E.B. Joy, J.W. Epple, M.G. Guler, R.E. Wilson, November 1993

The field present in the test zone of an antenna measurement range can be calculated from the range field measured on a spherical surface containing the test zone. Calculated test zone fields are accurate only within a spherical volume concentric to the measurement surface. This paper presents a technique for determining the probing radius necessary to create a volume of accuracy containing the test zone of the range. The volume of accuracy radium limit is caused by the spherical mode filtering property of the displaced probe. This property is demonstrated in the paper using measured field data for probes of differing displacement radii. This property is used to determine the volume of accuracy radium from the probing radius. This is demonstrated using measured far-field range data.

Simulation and verification of an anechoic chamber
R.M. Taylor,E.S. Gillespie, S.R. Renegarajan, November 1993

This paper considers an electromagnetic field simulation of an anechoic chamber with experimental verification. The simulation is a Geometric Optics (Ray Tracing) mathematical model of the direct path between two antennas and interfering scattering. There are two separate models due to the frequency dependent nature of the pyramidal radar absorbing material (RAM). The model for the frequency range of 30 to 500 MHz was used to characterize the specular scattering. The specular scattering was modeled as a lossy, tapered, TEM transmission line in an inhomogeneous anisotropic tensor material. The frequency range from 500 MHz to 18 GHz was characterized by dominant tip diffraction of RAM patches and the model made use of a Uniform Theory of Diffraction code for a dielectric corner. The measurements and simulations were based on an azimuthal cylindrical scan. Diagnostic measurements were also performed by a cylindrical scan of a directional horn antenna to locate scattering sources in the chamber. A cylindrical wave, modal expansion of the diagnostic data which included a one dimensional Fast Fourier Transform with Hankel function expansions.

Multipaction analysis utilizing finite element techniques
W.A. Caven,E.S. Gillespie, November 1993

A technique for multipaction analysis based on finite element modeling of the electromagnetic fields within a device is demonstrated. A multipaction device is modeled with HFSS to determine the field solution for use in multipaction analysis. The resultant field magnitudes within the critical gap region were compared with the measured breakdown events for 4 different gap sizes of the device. The relationship between the scattering coefficient convergence and field solution convergence is examined, and some indicators of the latter are established. The correlation between the data and the predictions indicates that the technique represents s reasonable analytical tool for such analysis.

Generation of wideband information from a few samples of data
R. Adve,T.K. Sarkar, November 1993

The Method of Cauchy has been used to extrapolate a desired parameter over a broad range of frequencies using some information about the parameter as a few frequency points. The approach is to assume that the parameter, as a function of frequency, is a ratio of two polynomials. The problem is to determine the order of the polynomials and the coefficients that define them. For theoretical extrapolation/interpolation the sampled values of the function and, optically, a few of its derivatives with respect to frequency have been used to reconstruct the function. This technique also incorporates the method of Total Least Squares to solve the resulting matrix equation.

Ground and airborne calibration of the ground to air imaging radar
W. Nagy,E.L. Johansen, November 1993

A Ground to Air Imaging Radar system (GAIR) used to perform diagnostic imaging and total RCS measurements on low observable airborne targets has been developed by the Environmental Research Institute of Michigan (ERIM). In order to ensure accurate measurement of the scatterers contributing to a target's radar signature, proper calibration in imperative. The use of external calibrators to measure the end-to-end system transfer function is the ideal way to perform a system calibration. However, this is a more difficult and challenging task with a ground based radar viewing an airborne target, as opposed to a traditional airborne SAR which views an array of ground based trihedral corner reflectors. This paper will discuss the internal and external calibration methods used in performing an end-to-end system calibration of the GAIR. Primary emphasis is placed upon the external calibration of the GAIR and the three independent measurements utilized: a ground based corner reflector, a sphere drop, and an in-scene calibrator. The system calibration results demonstrate that the GAIR is an accurately calibrated radar system capable of providing calibrated images and total RCS data. Moreover, only the ground and internal measurements are required on a daily basis in order to maintain system calibration

Breaking the lambda/2 resolution limit using spherical microwave holography
M.G. Guler,D.N. Black, E.B. Joy, J.W. Epple, R.E. Wilson, November 1993

Progress in Georgia Tech's research in Near-Field Spherical Microwave Holography (NFSMH) is reported. Previously, the amplitude resolution of Spherical Microwave Holography (SMH) was defined and demonstrated. The definition of resolution has been altered to include phase resolution. The resolution of phase is shown to be equivalent to the resolution of amplitude, and both depend on the highest mode order used in the spherical wave expansion. Previous measurements showed that SMH can easily achieve x/2 phase resolution where X refers to free space wavelengths. Current measurements show that the X/2 resolution limit of planar microwave holography can be surpassed by using evanescent energy in the NSMFH technique. Measurements of small, closely spaced, insertion phase defects placed on a hemispheric ally shaped radome are used to demonstrate the improved resolution. The measurement of evanescent energy is achieved by using a specially designed small aperture probe and a small separation distance between small aperture probe and a small separation distance between the radome surface and the measurement surface. The relationship between measured and theoretical insertion phase of a known radome defect is shown. Given the defect size and the maximum mode order used in the spherical wave expansion, measured insertion phase can be used to predict the actual defects electrical thickness.

Experimental range facility for RCS measurement and imaging research
J. Burns,D., Jr. Kletzli, G. Fliss, November 1993

A small compact range measurement facility has been installed at the Environmental Research Institute of Michigan (ERIM) for research aimed at improving RCS measurement and radar imaging techniques. This paper describes the facility, which is referred to as the Experimental Range Facility (ERF). The ERF has two instrumentation radars; a Flam & Russell FR959 gated CW radar and a Hughes MMS-300 pulsed radar. The radars are connected to a suite of workstations, which support a variety of internally and externally developed radar imaging and data exploitation software. The ERF is also equipped with sophisticated target positioning control and sensing equipment.

New antenna metrology and radar cross section facility at the U.S. Army Redstone Technical Test Center
J.B., Jr. A. Johnson,W.S. Albritton, November 1993

The U.S.Army Redstone Technical Test Center (RTTC), Test and Evaluation Command, has developed a comprehensive antenna metrology and Radar Cross Section (RCS) evaluation facility. This facility features the compact antenna test range technique for millimeter wave measurements and the near-field scanning technique for microwave measurements. This paper described RTTC's use of these measurement techniques, instrumentation with PC Windows based automation software, anechoic chambers, and types of tests performed. Planned future thrust areas are also discussed.

Modern facility for test and evaluation of full scale aircraft antenna systems, A
A. Kvick,D.R. Frey, J.F. Aubin, K. Johansson, L. Hook, November 1993

A modern outdoor test facility has been designed for comprehensive evaluation of antenna systems on full scale aircraft. The aircraft are mounted to a positioner/tower assembly in an underground handling facility, and are raised to a height of 25 meters by a hydraulically activated lift. A source site 1000 meters downrange provides illumination of a 7 meter radius test zone over a 0.1-18 GHz band. All source site functionality is remotely controlled from the operations center located near the aircraft support tower. The range is designed to provide the capability not only for conventional automated antenna pattern measurements, but also for the support of ECCM testing. This is accomplished by activating both fixed and mobile jamming transmitters available to illuminate the test zone using either CW or modulated waveforms. The FR Model 959 Automated Antenna Measurement Workstation is being enhanced to allow for control of the jammer sites as well as the primary range sited. The system design and operation is described.

HARC/STAR Microwave Measurement Facility: physical description and capabilities, The
B.D. Jersey,A.J. Blanchard, B.A. Williams, B.D. Krenek, W.N. Colquitt, November 1993

A complete description is given of the unique radar cross-section (RCS) measurement facility built at the Houston Advanced Research Center in The Woodlands, TX. The uniqueness of this chamber comes from its ability to independently move the transmit and receive antennas, which can each be moved to any position within their respective ranges of motion to a resolution of about 0.05 degrees. The transmit antenna is fixed in azimuth, but can be moved in elevation: the receive antenna is free to move in both azimuth and elevation. Additionally, the target can be rotated in azimuth by means of an azimuth positioner. Analysis has been performed to determine the impact of chamber effects on measurement accuracy. The most notable chamber effect comes from the two large aluminum truss structures, which are the mounting supports for the transmit and receive antennas. Fortunately, the scattering from these structures can be readily separated from the desired target return through the use of range (time) gating. Time domain results are presented showing the effects of these structures.

HARC/STAR Microwave Measurement Facility: measurement and calibration results, The
B.D. Jersak,A.J. Blanchard, J.W. Bredow, November 1993

Numerous monostatic radar cross-section (RCS) calibration routines exist in the literature. Many of these routines have been implemented at the RCS measurement facility built at the Houston Advanced Research Center in The Woodlands, TX. Key monostatic results are presented to give an indication of the measurement accuracy achievable with this chamber. Unfortunately, bistatic calibration routines are not nearly as common in the literature. As with the monostatic routines, a number of bistatic routines have been implemented and typical results are presented. Additionally, descriptions are given for some of the reference targets along with their support structures that are used during calibration.

Lockheed Sanders, Inc., antenna measurement facility.
E.A. Urbanik,D.G. LaRochelle, November 1993

Lockheed Sanders, Inc., has constructed a state-of-the-art electromagnetic measurement system. Cost considerations dictated the use of existing facilities and space, We took advantage of the lessons learned from the Lockheed Advanced Development Company's (LADC) Rye Canyon, California Facility [1]. Lockheed Sanders, Inc. now has a complete indoor measurement capability from VHF to MMW. Lockheed Sanders, Inc. needed a facility capable of making measurements over a broad range of frequencies. The system consists of a tapered chamber and a compact range. The system consists of a tapered chamber and a compact range. The tapered chamber has a measurement area of 28' x 28' x 34'. This range is capable of antenna and RCS measurements from .1 to 2 GHz. The compact range is designed for 2 to 40 GHz. Using a Scientific Atlanta, Inc. reflector scaled from the Rye Canyon reflector, a 6' x 6' quiet zone is possible. Feeds consist of a feed cluster aligned for phase and limiting parallax and horn cross-talk. Both chambers use the Flam and Russell 959 measurement system. This paper will discuss the chambers and their operation. The paper will close with a demonstration with measurements on standard, complex targets.

New extrapolation/spherical/cylindrical measurement facility at the National Institute of Standards and Technology, A
J. Guerrieri,D. Kremer, T. Rusyn, November 1993

A new multi-purpose antenna measurement facility was put into operation at the National Institute of Standards and Technology (NIST) in 1993. This facility is currently used to perform gain, pattern, and polarization measurements on probes and standard gain horns. The facility can also provide spherical and cylindrical near-field measurements. The frequency range is typically from 1 to 75 GHz. The paper discusses the capabilities of this new facility in detail. The facility has 10 m long horizontal rails for gain measurements using the NIST developed extrapolation technique. This length was chosen so that gain calibrations at 1 GHz could be performed on antennas with apertures as large as 1 meter. This facility also has a precision phi-over-theta rotator setup used to perform spherical near-field, probe pattern and polarization measurements. This setup uses a pair of 4 m long horizontal rails for positioning antennas over the center of rotation of the theta rotator. This allows antennas up to 2 m in length to be accommodated for probe pattern measurements. A set of 6 meter long vertical rails that are part of the source tower gives the facility that added capability of performing cylindrical near-field measurements. Spherical and cylindrical near-field measurements can be performed on antennas up to 3.5 m in diameter.

Spherical nearfield measurement of a large deployable multibeam satellite antenna
T. Beez,J. Schneemann, November 1993

A large deployable multibeam antenna for communication satellites operating in the Ka band with 2.5 GHz transmit/receive bandwidth was developed and measured. The antenna is an offset Cassegain system with a 4.7 m diameter mail reflector divided into a central and 24 rigid deployable panels. One application studied in detail was the continuous illumination of the FRG with 16 beams. Spherical nearfield measurement techniques were used to validate the predicted performance. Because the gravity influence would cause inadmissible deformations, a compensation device must be used. To take into account the influence of the remaining deformations varying with the elevation position of the antenna, a special analysis software was developed which uses measured surface coordinates. Because measured and computed values agree well, it is possible to predict the performance in orbit precisely. A pointing accuracy of 0.01 degrees was achieved by adjustment of the sub reflector using a monopulse tracking system.

Applications of microwave holography in antenna design and development
K.S. Farhat,M.W. Shelley, N. Williams, November 1993

Antenna microwave holography is now a well established technique and has for a number of years provided a diagnostic tool for the evaluation and optimization of the electrically large reflector antennas used for satellite ground stations. Increasing interest is being shown in the use of the technique during the development of other complex antenna configurations in order to improve the design, minimize design cycles and, hence, reduce the overall cost. This contribution presents two examples of applications of the technique during the development of high performance antennas at ERA Technology LTD. For a corrugated slot-array antenna operating at 19.95 GHz, a clear improvement in the performance following design optimization based on the results obtained from microwave holography is shown for a 3 Am diamond reflector antenna for SATCOM applications operating at 14GHz, the technique provides a verification of distortions in the surface profile by mapping of the aperture phase distribution.

New extrapolation algorithm for high resolution imaging applications
M.R. van de Goot,A.G.H. Gerrits, V.J. Vokurka, November 1993

In ISAR applications data is acquired on a circular grid. In further processing, data on a rectangular grid is obtained by interpolation. This causes the loss of data outside the interpolated area. The latter can be corrected by extrapolation, but this can give incorrect information. A new technique s proposed which uses a larger rectangular area than in the above mentioned case. Some parts of this rectangle are calculated by extrapolation. Because most of the data in the larger rectangular area consists of original data, only minor parts are extrapolated. Consequently, this method is expected to be more reliable than traditional extrapolation techniques. Simulations have shown that the data obtained by the new interpolation - extrapolation scheme provide a considerable improvement to the amplitude - and phase accuracy across the enlarged rectangular grid.

Edge effect suppression in anechoic absorber evaluation
M. Knoben,H. Pues, M. Van Craenendonck, November 1993

In this paper a novel technique for suppressing edge effects which can corrupt reflectivity measurements of large absorbers, is presented. In consists in mounting a collar of small absorbers around the test sample of the large absorbers to be evaluated. It is shown that the edge effect return is by far the most dominant return during the reflectivity measurements of large absorbers whereas the inherent reflectivity levels of these absorbers can be very low. It is claimed that the so-called superior performance of small absorbers at very high frequencies as compared to large absorbers is probably not a reality but a misinterpreted measurement result due to edge effects.

Prediction and evaluation of anechoic chamber performance
C. Bornkessel,E. Heidrich, November 1993

Anechoic chambers have difficulty in meeting the new basic standards for radiated emission and susceptibility test facilities that have come into operations by the new EMC directive of the European Economic Community. In this contribution a method first presented at the 1992 A.M.T.A. meeting is extended to compute the performance of anechoic chambers at the most critical lower MHz frequency range. Computational results are shown of a real semi-anechoic chamber with a sloped ceiling and a symmetrical reference chamber. The results are compared with measurements values obtained by scanning the chamber with a small field probe. Following this, several methods for optimizing the chamber performance are proposed and evaluated in their effectiveness. The goal of this work is to achieve an accreditation of existing as well as chambers still to be built as standardized EMC test facilities in the specified frequency range.

Concept design of a cylindrical outdoor near field test range for high precision RF measurements
H-J. Steiner,T. Fritzel, November 1993

DASA's high precision Compact Range Program, which already was a breakthrough in new dimensions of RF measurements standards, will not be completed by a revolutionary new and one of the world's most unique types of Cylindrical Outdoor Near-Field Test Range. The most striking component of this new type facility will be its dominating fully air-conditioned, up to 50 m high diamond shaped concrete tower which is the integral part of the vertical probe scanner subsystem. Although this test range is located outdoor, it allows extremely precise characterization of all typical parameters for state of the art antenna systems.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31