AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

Radar cross section calibration measurements using helicopter suspended spheres
M.J. Prickett, November 1994

The Naval Command, Control and Ocean Surveillance Center, Research, Development, Test and Evaluation Division (NRaD) is tasked by the Navy to collect and evaluate full-scale radar cross section (RCS) measurements on ships and aircraft. The Radar Branch at NRaD, operates a radar range west of Pt Loma, San Diego, CA. This radar range has been used to collect X-band and Ku-band calibrated data on Naval ships for the past seven years. The NRaD radar calibration helicopter procedures are the focus of this paper. Using helicopters to suspend and measure "isolated" spheres in space as the primary reference is a major calibration element. A 1700-ft Kevlar line is used to suspend the sphere from the helicopter. This length of line is sufficient to isolate the helicopter from the sphere; thus, the helicopter is not in the significant antenna sidelobes.

Millimeter-wave RCS measurement technology
R. Dezellem,D. Mensa, K. Vaccaro, November 1994

Modifications to commercial millimeter-wave receiver and target positioner systems produced significant improvements in recent W-band experiments at NAWC, Point Mugu. This paper discusses difficulties encountered in millimeter-wave measurements and presents novel methods for their resolution. Results from wideband W-Band experiments, including ISAR images, are presented.

RCS doppler measurements at millimeter wave frequencies
K. Schmitt,G. Wanielik, R. Schneider, S. Bhagavathula, W. Wiesbeck, November 1994

A versatile millimeter wave imaging radar is presented to conduct polarimetric doppler as well as wide band RCS measurements. The aim of the system is not only to acquire doppler measurements of determine the distance of an object but also to generate image-like information for classification purposes. A hardware gate controller is incorporated in the system to perform pulsed measurements. This controller can drive three different frequency extension modules covering frequency ranges from 8 to 18 GHz, 70 to 80 GHz and 75 to 77 GHz respectively. In all bands, dual polarized horns are used to allow fully polarimetric measurements. A network analyzer and a FFT analyzer are used as receivers. For both concepts the advantages and disadvantages are discussed. The transmit and the receive antenna are mounted on a positioner. Thus, a radar image using the real aperture of the antennas can be generated by mechanical scanning in azimuth and elevation.

Proposed analysis for RCS measurement uncertainty
R.C. Wittmann,L.A. Muth, M.H. Francis, R. Lewis, November 1994

From a study of several radar cross section (RCS) measurement facilities, we identify significant sources of uncertainty and develop methods for estimating their effect. Out goal is to provide a "reasonable" and uniform formalism for evaluating RCS measurements which can be used on a variety of test ranges to produce comparable estimates of uncertainty.

Study of simple geometric shapes by polarimetric radar
P.S.P. Wei,A.W. Reed, B.Z. Shaw, C.F. Suter, D.C. Bishop, November 1994

New results from complete scattering matric measurements on string-suspended simple geometric shapes - from the Boeing 9-77 compact range - are presented for the first time.

Experimental results of strategic target identification by resonant radar cross section measurements
S. Kordella,J. Skelton, November 1994

RCS measurements of representative strategic targets in the resonant scattering regime are presented in this paper. The frequency and aspect dependent RCS signatures of various targets are shown to have close agreement to method-of-moment calculations which are based upon the known target shape and composition. Using the resonant scattering signatures, non-cooperative target recognition can be performed with high confidence using a discrete frequency sampling approach. The target set included cones, spheres, and canonical shapes which have been characterized in the VHF and UHF bands. Measurements made at the Lockheed Space Missile Company Rye Canyon facility have recorded calibrated RCS of representative hardware as a function of both frequency and aspect in the resonant region. These data compare well with prediction, and their use for non-cooperative target recognition will be explained. This effort is being conducted to develop signature models, laboratory measurements and useful discrimination algorithms which exploit the frequency variation of the resonant scattering RCS.

Efficient RCS measurement technique of a complex discontinuity on a large scattering object
J.J. Kim,O.B. Kesler, T.S. Watson, November 1994

Accurate RCS measurements of joints and cracks on a large vehicle have been difficult to to the limited quiet-zone size of indoor RCS measurement ranges and the high cost of the test model. An approach proposed here uses both simple RCS measurements of a planar test model and efficient analysis to evaluate the three-dimensions (3-D) RCS contribution of joints and cracks on an entire vehicle. Several test models with steps and grooves on planar and curved surfaces were constructed and the results of this approach were compared with actual 3-D RCS measurements. All comparisons showed very good agreement. The main advances of the measurement technique are simplicity, cost effectiveness, and its vast application to many complex discontinuity scattering problems.

Analysis of wedge radar cross section
Y.J. Stoyanov,Y.J. Stoyanov, November 1994

The need for practical solutions to radar scattering in high-frequency regime have led to the development of a number of approximation methods. The high-frequency asymptotic methods use approximations based on physical optics (PO), geometrical theory of diffraction (GTD) or physical theory of diffraction (PTD) and their variations. Radar scattering from electrically large conducting surface includes traveling surface wave contributions which are not accounted by the high-frequency asymptotic methods. A hybrid method integrating GTD and traveling wave theory (TW) is used for verification and to illustrate important scattering mechanisms that influence radar cross section (RCS) of a wedge. Analysis of the wedge RCS signature identifies significant contributions of the traveling surface waves to the total RCS. Both measured and predicted RCS of the wedge are considered. Using hybrid GTD-TW method very good agreement between the predicted and measured RCS patterns is observed for all angles.

Radar absorbing material thermal characteristics
R.M. Taylor,H.D. Reynolds, M. Matteson, November 1994

The Benefield Anechoic Facility, Edwards AFB, California contains a large anechoic chamber for avionic integration test and evaluation. Because of the large chamber size, operational tests can require high-power aircraft radar emissions. To define the range of energy safely accommodated by currently installed radar absorbing material (RAM), a detailed analysis was performed and the results presented. The incident radar energy generates a heat transfer to the RAM. The RAM boundaries dissipate heat through convection, conduction, and radiation. A finite-difference solution demonstrates the temperature distribution in the material varies with the angle and polarization of the incident electric field. Discussions include the use of the RAM thermal characteristic's pretest evaluation to improve operating capability determinations and to facilitate assessment of customer requirements.

Image processing techniques to remove absorber edge effects errors
W.D. Burnside,J-R, J. Gau, M. Beals, November 1994

Absorber is mounted in an anechoic chamber to attenuate stray signals. In this application the stray signals impinge on a whole continuous absorber wall. Consequently, to evaluate chamber performance, one must determine the reflection properties associated with an absorber wall instead of a finite absorber panel. Unfortunately, absorber is normally evaluated experimentally using a finite absorber sample. As a result, absorber measurements are corrupted by edge (end) effect errors. These errors have been observed in measured data using ISAR image techniques, especially for high performance absorbers. One can isolate these error terms by using image filtering. The corrected image is then transformed back to the frequency and angle domains, such that the resulting data will much better represent the true absorber performance. Measured and calculated results will be shown to validate this new method for high performance absorbers.

Application of genetic algorithms to the optimisation of wideband Jaumann radar absorbers for normal and oblique incidence
B. Chambers,A. Tennant, November 1994

The design of wide-band, multi-layer radar absorbing materials involves the solution of what is essentially an N-dimensional optimization problem. Genetic algorithms appear to offer significant advantages over conventional optimization techniques for this type of problem due to their robustness and independence of performance function derivatives. To illustrate their use, the paper considers the optimum design of wideband, multi-layer, Jaumann radar absorbers for normal and oblique incidence.

Spherical microwave holography, the movie
E.B. Joy,D.A. Leatherwood, M.G. Guler, November 1994

Microwave holography is an important technique for analyzing electromagnetic fields in close proximity to objects such as antennas or radomes. In this paper, data measured in the far-field and near-field are transformed to the surface of a spherical radome using spherical microwave holography. Further, the fields are calculated on a sequence of spheres concentric to the spherical radome to display the spatial distribution of the fields as a function of distance from the surface of the radome out to five wavelengths from the radome, a movie. This progression demonstrates the ability to locate radome surface defects is severely limited without the use of microwave holography. Three sets of radome defects are presented and range in size from three-eights of a wavelength to three wavelengths. This paper shows that near-field measurements alone are not generally capable of locating defects directly.

High resolution one dimensional radome characterization
A. van der Merwe,C.W.I. Pistorius, D.J. Janse van Rensburg, November 1994

In this paper radome evaluation based on high resolution imaging techniques is described. It allows anomalies on a large radome to be detected very accurately. It required scanning of the radome through only a small angular section using an inverse synthetic aperture radar approach. The one dimensional image formed from field data provides a linear distribution of scattering source locations. The calibration necessary to compensate for the translation and rotation of the antenna is discussed. The technique is demonstrated through measurements performed on a large fibre glass radome.

System engineering for a radome test system
J.R. Jones,D. Smith, D.M. Folsom, D.W. Hess, V. Jory, November 1994

This paper will discuss the system level design of a radome test system implemented in a compact range. The system includes a tracking pedestal controlled by an autotrack controller, a measurement receiver, a unique five-feed arrangement for the compact range which accommodates both tracking and measurement functions, and a laser autocollimator for coordinate system referencing. Key elements of system design include the required coordinate system transformations, the mechanical design of the positioning system and its contribution to the system error budget, the dynamics of the tracking system, and the synchronization of the autotrack controller, the measurement receiver, and the system controller. These aspects of system design will be discussed and measurement and analysis results will be presented.

Effectiveness of using software gating to mitigate data errors results from I/Q imbalance, The
S. Li-Fliss,G. Fliss, J. Burns, November 1994

The process of recovering signal amplitude and phase from the in-phase (I) and quadrature (Q) signal components requires the I and Q channels to be perfectly balanced in amplitude and shifted exactly 90 degrees in phase. Existing I/Q correction algorithms on wide-band data generally work well when the channel imbalance errors exhibit little or no variation with frequency. Their effectiveness tends to decrease as the I/Q errors become more frequency dependent. In this paper, a software gating method of mitigating data errors resulting from I/Q imbalance will be presented. This approach to I/Q imbalance correction provides a method of mitigating frequency dependent I/Q errors over wide-band data without independently determining the imbalance at each frequency. The method has been shown to produce high quality amplitude and phase data from measured input with frequency dependent imbalance.

Combined pulsed/CW and pulsed-IF instrumentation radar system, A
D. Fleisch,B. Kent, H. Chizever, P. Swetnam, November 1994

In response to evolving USAF RCS measurement requirements, Lintex has developed a combined Pulsed/CW and Pulsed-IF instrumentation system for use at the Advanced Radar Cross Section Measurement Range. This instrumentation system, one of Lintek's Model 500 Series, couples the simplicity and high signal-to-noise ration of Pulsed/CW measurements with the flexibility and precise clutter rejection of Pulsed-IF systems. In this paper, a direct comparison of the Pulsed/CR and Pulsed-IF performance is presented. The theoretical sensitivity and throughput of the system as a function of duty cycle in each mode is calculated and compared to the measured results. The Pulsed-IF system is found to have better sensitivity and stability for short-range measurements due to the high PRF capability of this receiver. The Pulsed-IF mode of operation also offers much better sensitivity for measurements made at longer ranges, for which the duty-cycle losses of the Pulsed/CW mode become excessive. The wideband Pulsed-IF mode is also preferred in high-background environments, since precise time-gating may be used to reduce the clutter return. In areas of high RFI, the Pulsed/CW radar system has provided better results due to the narrow receiver bandwidth.

Compact modular instrumentation radar system, A
J. Paul,E. Lee, Y. Chu, Y.M. Woo, November 1994

A compact modular instrumentation radar system has been developed for antenna, RCS, and general RF measurements. The MMS-420 system consists of a single, rack mounted, programmable mainframe controller and display into which a wide range of RF, IF and signal processing modules can be installed. A family of external RF modules has also been developed to support measurements from VHF through millimeter-wave bands. It is designed to function as a stand-alone measurement system, or interface with network analyzers and other external processing equipment. The hardware and software are easy to customize for specialized measurement applications.

Position correction on large near-field scanners using an optical tracking system
G. Hindman, November 1994

Large scanners used for near-field antenna measurements require careful attention to the design and fabrication process to maintain probe position accuracy. This paper discusses the design, implementation, and results of a novel optical probe position tracking system used by NSI on a number of large near-field scanners. This system provides measurement of the probe X, Y and Z position errors, and real-time on-the-fly position correction. The use of this correction can significantly enhance measurement accuracy, and can reduce the cost of building large near-field scanners.

Efficient antenna testing using current antenna test systems
A.R. Koster,R. Munoz, November 1994

Accurate, fast, and cost effective antenna test equipment is necessary to meet many programs measurement requirements and schedule and budget constraints. Testing time may be significantly reduced y measuring multiple channels of data simultaneously. Further time savings are realized via the electronic storage of data, which allows easy pattern overlays and changes in the page setup parameters. Electronic storage of data also allows the user to accurately ascertain test parameters. Test data for a dual band, multi-channel antenna measured wit the Scientific Atlanta 1590 Pattern Recorder and multi-channel 1795 Microwave Receiver is presented. This antenna has transmit and receive ports, multiple polarization capability, data and tracking channel outputs and multiple frequency bands. The substantial savings in testing costs are estimated.

Enhanced sensitivity microwave receiver for MM microwave antenna measurements
A.R. Koster,R. Munoz, November 1994

In order to improve the sensitivity and dynamic range of antenna measurement systems in mm waves, a unique receiver configuration was developed that improves sensitivity and dynamic range up to 43 db above the traditional harmonic mixer configuration. The technique is based on fundamental mixing configuration up to 18 GHz and low harmonic for frequencies above. The system is designed to get excellent sensitivity and high dynamic range even if a lossy component is connected at the front of the receiving system. A technical description of receiver configuration, together with actual test results, will be shown in the paper.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30