Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
S.R. DeGraaf,E. LeBaron, G. Fliss, K. Quinlan, S. Li-Fliss, November 1995
ERIM is investigating the use of modem spectral esti mation techniques for extracting (editing) desired or undesired contributions to RCS and ISAR measurements in two ways. The first approach involves using parametric spectral estimators to perform frequency sweep range compression and signal history editing, while the second involves using the associated stabilized linear prediction filters to extrapolate sweep data and perform "enhanced resolution" Fourier image editing. This paper summarizes our editing algorithms and illustrates RCS editing results using measurements of a conesphere target contaminated by a metal rod and foam support. The reconstructed "clean" conesphere measurements are compared quantitatively against numerically simulated ground truth. Editing was performed using three bandwidths at two center fre quencies to provide insight into the impacts of nominal resolution and scatterer amplitude variation with fre quency on editing efficacy, and to assess the degree to which superresolution algorithms can offset reduced nominal resolution.
Spatially Variant Apodization (SVA) [l] is nonlinear image domain algorithm which effectively eliminates finite-aperture sidelobes from SAR/ISAR imagery without degrading mainlobe resolution, unlike traditional methods of sidelobe suppression (e.g. Taylor weighting). Dezellum et. al. [2] demonstrated at the 16th AMTA symposium the benefits of SVA for improving RCS analysis of ISAR data. The purpose of this paper is to show that robust super-resolution via bandwidth extrapolation can be obtained in a relatively simple, straightforward manner using SVA, providing further improvement in RCS measurements from SAR/ISAR data. This new super-resolution algorithm (called Super-SVA) can extrapolate the signal bandwidth for an arbitrary set of scatterers by a factor of two or more, with a commensurate improvement in resolution.
Super-resolution techniques have been traditionally limited to problems where a-priori knowledge is available and/or the scene content is suitably constrained. Using Super-SVA, no a-priori knowledge of scene content is required. Super-SVA exploits the fact that SVA applied to an image results in finite image-domain support on the scale of the system resolution for an arbitrary set of complex scatterers. Extrapolation of the frequency-domain signal data is then simply a matter of applying frequency-domain inverse amplitude weighting. The fidelity of the deconvolution process can be improved by embedding the original signal data in the extrapolated data and performing further iterations of the process.
Traditional range/doppler ISAR techniques have inherent geometric limitations. By using concepts of microwave holography and tomography, a vector-based k space approach allows a more generalized geometry of the sampled Fourier space. By constructing a complete annulus in the polar sampling space, arbitrary apertures up to 360 degrees can be processed for "full body" two dimensional images. This processing also typically exhibits better resolution. The algorithm relies on linear interpolation for potar Cartesian conversion. The general geometric formulation is also readily adaptable to arbitrary antenna configurations.
Rome Laboratory has recently designed and implemented a state of the art automated antenna measurement data acquisition system at the Rome Lab/Newport antenna test facility.
A generalized approach to the antenna data acquisition hardware and software was implemented which allows sequencing, control and measurement of test variables in virtually any order without test specific software modifications. The hardware design is based on distributed computers in which real-time data acquisition tasks and near real-time operator control and data analysis tasks are performed independently. The computers operate in a remote client/server configuration in which control information and data are transferred via fiber optic local area network.
In this paper, the fundamental approach to the data acquisition system design is discussed and the antenna measurement hardware and software that comprises the final system are described.
V. Jory,G.W. Pearson, J.R. Jones, L.L. Oh, S.J. Manning, T.L. Norin, V. Farr, November 1995
In an earlier paper ("System Engineering for a Radome Test System," John R. Jones, et al, AMTA, October 1994) the system level design of a compact range enhancement for the testing of the Triband Radome was presented. This paper will discuss the installation and testing of the radome measurement system in the compact range. The purpose of the radome measurement system is to determine (within close tolerances) boresight shift, transmission loss, antenna pattern changes and polarization effects caused by the radome. Unique features include novel coordinate transformation and correction by means of a laser autocollimator and data reduction algorithms. Also featured is the tracking subsystem which consists of a specially designed two-axis track pedestal, an autotrack controller, and three five-horn compact range feed arrays operating at X, K, and Q-bands. The performance of the triband radome measurement system in the compact range setting will be presented.
We discuss how RCS target depolariza tion enhances cross-polarization contamination, and we present a graphical study of measurement error due to depolarization by an inclined dihedral reflector. Error correction requires complete polarimetric RCS measure ments. We present a simple polarimetric calibration scheme that is applicable to reciprocal antenna radars. This method uses a dihedral calibration target mounted on a rotator. Because the calibration standard can be ro tated, there is no need to mount and align multiple sepa rate standards, and clutter and noise may be rejected by averaging over rotation angle.
Historically, radar imaging sensors have been divided into two categories, SAR and ISAR systems. Even though they are solving the same imaging prob lems the data collection environment is dramatically dif ferent between the two. Consequently, the particular waveforms selected for the two have been different. The primary waveform for ISAR RCS measurement systems is stepped frequency, while the FM-chirp (linear-FM) waveform has been used much more often in SAR applications. However, recently this boundary has been blurred, in that stepped frequency radars are being applied to long range dynamic measurements, long the domain of chirped waveforms, and conversely the chirped waveform has been applied to target RCS mea surements of both static and dynamic targets. This paper will address the system parameter tradeoffs involved in selecting between the two waveforms for two different applications; (i) near range static target imaging, and (ii) far range dynamic target imaging. The system parameter tradeoffs involve RF bandwidth, PRF, scene size, trans mitter power, doppler frequency spread of target, etc. The advantages, disadvantages, and inherent limitations of each waveform will be analyzed to yield a better understanding of the tradeoffs involved, and the data collection examples will further illustrate these tradeoffs for the two specific applications.
Radar cross section measurements must be performed in a wide variety of situations throughout development of a new vehicle. In these days of smaller budgets, it is vitally important that the right things get measured, at the right time in the program, with the right accuracy, and that these measurements be integrated into the development process in the right way. After delivery, the measurement system must be confidently usable by the user organization, with a minimum of outside to ensure that the vehicle is maintained. Many of the key programs in this area were begun before modern measurement technology was known to be capable of providing detailed diagnostic measurements. Consequently, specifications did not consider what can be easily measured with today's modern diagnostic radars. This paper addresses how mcxlern diagnostic radar cross section measurements can be exploite4:l to make the specification, development, pnxluction, and testing phases much more efficient than they have been in the past.
Photogrammetry, as its name implies, is the science of obtaining precise coordinate measurements from photographs. Until recently, photo-grammetry used film photographs taken with specially designed, high-accuracy film cameras. With the development of h igh resolution solid-state imaging sensors, a new era in photogrammetry has arrived. Video grammetry, as it is often called, provides far faster results and greater capability than film based photogrammetry, and therefore eliminates the major impediments to more widespread use of photogrammetry in the antenna manufacturing industry.
Video-grammetry is a powerful enabling technology that not only performs many current measurement tasks faster and more efficiently th an existing technologies, but also, now makes feasible many types of measurements, that pre viously were not practical or possible. The capability for quick, accurate, reliable, in place measurements of static or moving objects in vibrating or unstable environments is a powerful combination of features all in one package.
There are many applications for this emerging new technology in the antenna manufacturing industry. This paper will describe some of the successfu l implementation of video-grammetry into the MSA T program at Hughes Space and Communications Company located in Los Angeles, California.
W.D. Burnside,B. Smith, L-C.T. Chang, November 1995
With modern range hardware, it is possible to per form ultra wide band frequency measurements with out changing the range configuration. This has not been possible with existing chamber antennas be cause they have been limited in bandwidth in or der to provide the desired illumination. In addition, these antennas have not considered scattering issues, even though one goes to great lengths to minimize reflections within a chamber. The rolled edge Slot line Bowtie Hybrid (SBH) antenna has been used for ultra wide band applications for many years. How ever, it can not meet the range scattering require ments due to its structure (large rolled edges). In this paper, a new R-Card version of the SBH an tenna is presented. It is fabricated by integrating resistive sheets (R-Cards) into the blended rolled edge concept so that both the ultra wide band and low RCS antenna features can be obtained simul taneously. Further, by employing resistive sheets, the R-Card SBH antenna can provide the desired constant beamwidth to fully illuminate the target zone. Measured and calculated results are presented to demonstrate the performance of this new antenna.
This paper describes an adaptive array that was designed to improve the carrier-to-interference ratio (C/I) delivered to base station radios by 6 dB in U.S. 800 MHz analog cellular networks. The C/I performance of this kind of system is difficult to verify, because it cannot be characterized in terms of traditional antenna specifications such as beamwidth and directivity. This paper describes a simple C/I measurement strategy in which the antenna under test and a collocated reference antenna are placed into simultaneous operation in an actual cellular network. Relative C/I performance can then be deduced from a statistical analysis of the antenna outputs. This method is particularly well-suited to software radio based systems, because no special test equipment is required to gather the necessary data.
A novel test article, the Transformable Scale Aircraft-Like Model (TSAM), which holds great promise for validating complex computational electromagnetic (CEM) codes more effectively is described. The novelty of TSAM is in the use of removable/replaceable canonical shaped structural components. The complexity in TSAM can be tailored to the modeling capabilities of the CEM code under test allowing discrepancies between measurement and simulation to be more explainable. A set of preliminary measurements on TSAM have been made and the results compared to calculations from the General Electromagnetic Model for the Analysis of Complex Systems (GEMACS) program (1), a standard CEM code.
The development* of a real time electronic system to accurately measure the pattern of high gain, ultralow sidelobe level antennas in the presence of multipath scatterers is described. Antenna test ranges contain objects that scatter the signal from the transmitting antenna into the main beam of a receiving antenna under test (AUT), thereby creating a multipath channel. Large measurement errors of low sidelobes can result. The design and computer simulation of an Antimultipath System (AMPS) is complete. Fabrication of a feasibility demonstration model AMPS to operate with rotated AUTs to suppress indirect (scattered) components and permit accurate pattern measurements is almost done. Results to date show the likelihood of measuring sidelobe levels 60 dB below the main beam.
* This project is sponsored in part by the Air Force Material Command under Rome Laboratory Contract Nos. F30602-92-C-0009, Fl9628-92-C-0130 and F 19628-93-C-02 l4.
M.A.J. van de Griendt,S.C. van Someren Greve, V.J. Vokurka, November 1995
Boresight and gain determination play an important role in antenna measurements. Traditionally, on outdoor ranges, optical methods are used to determine the boresight. Accuracy requirements better than 0.001 degrees are difficult if not impossible to obtain on outdoor ranges using these method since the effect of incident electromagnetic fields are not taken into account. On indoor ranges no technique is available at present that achieves the desired accuracy demands. In this paper, an improved method for boresighting will be presented. It will be shown that using this technique, desired accuracy demands on both outdoor and indoor can be obtained. Furthermore, the method can also be combined with accurate gain calibration. Advantages and disadvantages of this technique will be discussed.
Optical surveying techniques with theodolites have been utilized for many years for static measurements of reflector antennas. This paper reports on updated optical surveying systems used to measure the accuracies and structural deformations of reflector antennas. Deformations of large Cassegrain tracking antennas during elevation rotation and a fixed, billboard-style compact range reflector over time are discussed.
A simple surveying method is shown for the integrated measurement of Cassegrain antennas (both primary and secondary reflectors) from near the primary vertex. Other topics covered include accurate prediction of interpolated gravity deformations of rotating reflectors based on a small measurement sample, and a method for taking differences between measurements.
The use of EDM (Electronic Distance Measurement) theodolites as well as angle-only devices is described, along with software which manages both the measurement and data-reduction systems.
W.A. Davis,G.F. Ricciardi, J.R. Nealy, W.L. Stutzman, November 1995
In this paper, we present a new technique for measuring the input impedance of balanced antenna systems. The process uses standard two-port scattering parameters for balanced antennas, feeding each of the balanced input ports as the port of a two-port. The scattering-parameters will be related to the designed input impedance which may be obtained by post-processing the data. In addition, the scattering-parameters may be used to check for the assumed balance of the system. Both experimental and simulated results will be presented to validate the technique.
J.F. Aubin,D.R. Frey, J.D. Berlekamp, November 1995
Due to rapid growth in the RF commercial market, new thinking is required in antenna measurement techniques. Certain customers, such as those designing cellular base station antennas, have unique requirements. One example of this is accurate front to-back ratio measurements. This is a difficult measurement to make inside an anechoic chamber, particularly at the currently used commercial frequencies.
This paper focuses on a technique for measuring front-to-back ratio, which involves averaging patterns collected at different test antenna positions in order to resolve the chamber back wall reflection from the antenna back lobe measurement.
Techniques for the X-band inverse synthetic aperture radar (ISAR) imaging of a naval ship at sea are presented. We show that the longer the observation time (and thus the angle span), the better the image until a limit based on the pitch roll and yaw motion of the ship is reached. A Fourier transformation ISAR algorithm will be shown and a modified hybrid algorithm will be demonstrated using autoregressive spectral estimation. A hybrid algorithm based on data extrapolation obtained using FBLP coefficients will be demonstrated. Specific motion compensation tradeoffs will also be discussed.
The Naval Command, Control and Ocean Surveillance Center RDT&E Division (NRaD) has been using a 500 MHz Linear Frequency Modulated (LFM) radar to collect measurements of flying aircraft. These data have been used to generate high resolution Inverse Synthetic Aperture Radar (ISAR) images of the targets [l]. Digital Signal Processing (DSP) hardware had been added to the radar and algorithms have been implemented to perform ISAR processing on the data in real time. A VME bus architecture has been developed to provide a scaleable, flexible platform to test and develop real-time processing software. Algorithms have been developed from a system model, and processing software has been implemented to perform pulse compression, motion compensation, polar reformatting, image formation, and target motion estimation.
The identification of targets with radar is frequently based on a priori knowledge of the RCS characteristics of the target as a function of frequency and viewing angle. Due to the complex ity of most targets, it is difficult to predict their RCS signature accurately. Furthermore, complex and large reference libraries will be required for identification purposes. In most cases, a complete knowledge of the RCS is not required for successful identification. Instead, a target representation composed of the contributions of the main scattering centers of the target can be sufficient. This means that a corresponding target representation based on an estimation with Geometrical Optics (GO) or Physi cal Optics (PO) techniques will contain enough information for target identification purposes.
In this paper, a new technique is described which is based on a reconstruction of the scattering centers. These are found at locations where the normal to the surface points in the direction of the angle of incidence. The RCS at these positions depends mainly on the local radii of curvature of the surface. Further more, PO and GO approximations are known as high-frequency techniques, assuming structures that are large compared to the wavelength. At low frequencies, which may be of interest for certain class of identification procedures, and for small physical radii of curvature, the RCS prediction is often difficult to determine numerically. Results from measurements show that this approach is also valid at lower frequencies for the classes of targets as mentioned, even for structures that are significantly smaller than the wavelength. As a consequence, it is expected that even complex targets can be represented adequately by the simplified model.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.