Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
A number of European Space Agency's (ESA) initiatives planned for the current decade require metrology level accuracy antenna measurements at frequencies extending from L-band to as low as 400 MHz. The BIOMASS radar, the Galileo navigation and search and rescue services could be mentioned among others. To address the needs, the Technical University of Denmark (DTU), who operates ESA’s external reference laboratory “DTU-ESA Spherical Near-Field (SNF) Antenna Test Facility”, in years 2009-2011 developed a 0.4-1.2 GHz wide-band higher-order probe. Even though the probe was manufactured of light-weight materials -- aluminium and carbon-fibre-reinforced polymer (CFRP) -- it still weighs 22.5 kg and cannot be handled by a single person without proper lifting tools. Besides that, a higher-order probe correction technique necessary to process the measurement data obtained with such a probe is by far more demanding in terms of the computational complexity as well as in terms of calibration and post- processing time than the first-order probe correction. On the other hand, conventional first-order probes for SNF antenna measurements utilizing open-ended cylindrical waveguides or conical horns fed by cylindrical waveguides operating in the fundamental TE11-mode regime also become excessively bulky and heavy as frequency decreases, and already at 1 GHz an open-ended cylindrical waveguide probe is challengingly large. For example, the largest first-order probe at the DTU-ESA SNF Antenna Test Facility operates in the frequency band 1.4–1.65 GHz and weighs 12 kg. At 400 MHz, a classical first-order probe can easily exceed 1 cubic meter in size and reach 25-30 kg in weight. In this contribution, a compact P-band dual-polarized first-order probe is presented. The probe is based on a concept of a superdirective linear array of electrically small resonant magnetic dipole radiators. The height of the probe is just 365 mm over a 720-mm circular ground plane and it weighs less than 5 kg. The probe covers the bandwidth 421-444 MHz with more than 9 dBi directivity and |µ| ? 1 modes suppressed below -35 dB. The probe design, fabrication, and test results will be discussed.
Raytheon, El Segundo, CA chamber #2 is a dual reflector, indoor compact range that is the largest facility of its kind within the company. A series of tests were performed to characterize the measured transfer function of the chamber because of a recent capital upgrade of the range measurement system. The purpose of this paper is to document and discuss the results of the characterization testing, review how the measured transfer function of the range was determined, and compare the current results with both past data and analytical predictions, and demonstrate how this transfer function is used for antenna and radar cross section (RCS) measurement characterization. The measured transfer function of the range is used for both antenna and RCS measurement characterization. For antenna measurements, the transfer function is used in the Friis transmission equation to determine, for example, the expected power at the receiver given the transmit power and gain of both the transmit antenna and the antenna under test. Appropriate amplification and/or attenuation can determined as part of the test planning process saving time during test setup and test execution. For RCS measurements, the transfer function was recently utilized to study the benefits and challenges of relocating our instrumentation radar from a smaller compact range to this large compact range. The motivation for the study was enhanced measurement capability for larger targets and lower frequencies. This study utilized noise equivalent RCS (NERCS) as the metric and transmit power, pulse width, and pulse integration as the study parameters to find a practical solution for optimizing NERCS.
Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern. In order to perform more complete characterizations, a spherical experimental layout has been developed at CEA for indoor Near Field monostatic RCS assessment. This experimental layout is composed of a 4 meters radius motorized rotating arch (horizontal axis) holding the measurement antennas while the target is located on a polystyrene mast mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allows full 3D near field monostatic RCS characterization. This paper details a RCS measurement technique and the associated-post processing of raw data dedicated to the localization of the scatterers of a target under test. A specific 3D radar imaging method was developed and applied to the fast 3D spherical near field scans. Compared to classical radar images, the main issue is linked with the variation of polarization induced by the near-field 3D RCS facility. This method is based on a fast and efficient regularized inversion that reconstructs simultaneously HH, VV and HV 3-D scatterer maps. The approach stands on a simple but original extension of the standard multiple scatterer point model, closely related to HR polarimetric characterization. This algorithm is tested on simulated and measured data from a metallic target. Results are analyzed and compared in order to study the 3D radar imaging technique performances.
Near field Inverse Synthetic Aperture Radar (ISAR) Radar Cross Section (RCS) measurements are used in this study to obtain geometrically correct images of full scale objects placed on a turntable. The images of the targets are processed using a method common in the compressive sensing field, Basis Pursuit Denoise (BPDN). A near field model based on isotropic point scatterers is set up. This target model is naturally sparse and the L1-minimization method BPDN works well to solve the inverse problem. The point scatterer solution is then used to obtain far field RCS data. The methods and the developed algorithms required for the imaging and the RCS extraction are described and evaluated in terms of performance in this paper. A comparison to image based near to far field methods utilizing conventional back projection is also made. The main advantage of the method presented in this paper is the absence of noise and side lobes in the solution of the inverse problem. Most of the RCS measurements on full scale objects that are performed at our measurement ranges are set up at distances shorter than those given by the far field criterion. The reasons for this are, to mention some examples, constraints in terms of available equipment and considerations such as maximizing the signal to noise in the measurements. The calibrated near-field data can often be used as recorded for diagnostic measurements but in many cases the far field RCS is also required. Data processing is then needed to transform the near field data to far field RCS in those cases. Separate features in the images containing the point scatterers can be selected using the method presented here and a processing step can be performed to obtain the far field RCS of the full target or selected parts of the target, as a function of angle and frequency. Examples of images and far field RCS extracted from measurements on full scale targets using the method described in this paper will be given.
Wei Gao, Xiao-Lin Mi, Yi Liao, Xiao-Bing Wang, November 2016
The higher the frequency is, the greater the influence of the precision and the realism of the CAD models on electromagnetic (EM) scattering characteristics are. In the terahertz (THz) regime, surfaces of most objects can’t be taken as smooth according to Rayleigh criterion. The interaction of EM waves and the surface presents a coherent part in the specular direction and a scattering part in the other directions. Unfortunately, the roughness of surface can’t be represented by the CAD geometry. Based on statistics theory, the rough surface height profile is fully determined by the height probability density function (pdf) and its autocorrelation functions. Without loss of generality, the height pdf of surface is assumed to be Gaussian. Under the assumption, the random Gaussian rough surface is correspondingly generated. The original CAD geometry and the random Gaussian rough surface are superposed as the input of EM computation. To demonstrate the roughness impact on RCS, EM scattering characteristics of simple canonical objects such as plate, dihedral and trihedral in the THz regime are investigated. Taking into account the statistical surface roughness, the ray-based high-frequency EM method, shooting and bouncing rays (SBR), is utilized to compute the RCS of the above objects in the THz regime. Furthermore, the inverse synthetic aperture radar (ISAR) images are also carried out via filtered back projection (FBP) method. The EM scattering characteristics of the above objects in the THz regime are analyzed. Great differences of the objects EM scattering characteristics between the smooth and rough ones are observed and discussed.
Scott McBride, Steven Nichols, Mike Murphy, Vince Rodriguez, George Cawthon, November 2016
“RTCA DO-213 Minimal Operation Performance Standards For Nose-Mounted Radomes” is a document frequently referenced in nose-radome testing requirements for commercial aircraft. This document was produced and is maintained by the Radio Technical Commission for Aeronautics (RTCA). The specifications of weather-radar systems have recently changed within RTCA’s DO-220A, and as a result DO-213 was updated to DO-213A in March, 2016, to ensure that radome requirements are consistent with those of the weather radar. In addition to the new requirements for radome evaluation, several existing requirements were clarified. These clarifications addressed such things as suitability of near-field measurements, proper procedures and processing, and appropriate measurement geometries. RTCA coordinated the document revision, with the bulk of the technical inputs coming from a broad-based working group. This working group had representatives from radar, aircraft, and radome manufacturers, government agencies, and providers and users of radome-testing systems. When requirements were added or when common practice conflicted with existing requirements, there was considerable effort and analysis employed to ensure that each change or clarification was truly required. Nevertheless, DO-213A has some significant impacts to many existing radome-testing facilities. This paper discusses the significant changes in DO-213A and their implications for radome test facilities, concentrating on after-repair radome electrical testing.
David Wayne, John McKenna, Scott McBride, November 2016
The evaluation of RF Sensors often requires a test capability where various RF scenes are presented to the Unit Under Test (UUT). These scenes may need to be dynamic, represent multiple targets and/or decoys, emulate dynamic motion, and simulate real world RF environmental conditions. An RF Scene Generator can be employed to perform these functions and is the focus of this paper. The total test system is usually called Hardware in the Loop (HITL) involving the sensor mounted on a Flight Motion Simulator (FMS), the RF Scene Generator presenting the RF Scene, and a Simulation Computer that dynamically controls everything in real time. This paper describes the system concept for an RF Scene Generator that simultaneously represents 4 targets, in highly dynamic motion, with no occlusion, over a wide range of power, frequency, and Field of View (FOV). It presents the test results from a prototype that was built and tested over a limited FOV, while being scalable to the total FOV and full system capability. The RF Scene Generator employs a wall populated with an array of emitters that enables virtually unlimited velocity and acceleration of targets and employs beam steering to provide high angular resolution and accuracy of the presented target positions across the FOV. Key words: RF Target Simulator, RF Scene Generator, Multiple Targets, Beam Steering Wall of Emitters, Steering Array Calibration, Plane-Wave Generator, Radar Environment Simulator.
The automotive industry is changing rapidly through the evolution of on board and embedded components and systems. Many of these systems rely on the over the air performance of a communication link and the evaluation of these links is a key requirement in understanding both the real world performance, and associated operating limits of a particular system. The operating frequency range of the installed communication systems now extends from the traditional AM bands from 540KHz to almost 6GHz for WiFi. There are several different antenna design options available to cover this range and in many cases, the performance of an antenna when installed on a vehicle differs from a measurement of the same antenna in isolation. There is also a growing use of high frequency RADAR systems operating at frequencies approaching 80GHz that also need to be included in the performance analysis. The behavior of the individual components using conducted methods for example, is an important step but the direct measurement of antenna pattern and data throughput under ideal steady state and also varying spatial and operating conditions is likely to be the most robust method of channel evaluation. There is a steady march toward vehicle autonomy that is pushing the development of increasingly complex and sophisticated sensors, receivers, transmitters and firmware, all installed on an already well populated platform. The interoperability and EMC performance of these embedded systems is an extension to the need for a fundamental understanding of performance. This paper will present some of the available measurement and evaluation options that could be used as part of an integrated test environment which takes advantages of a number of established techniques.
Andrew J. Knisely, Peter J. Collins, November 2016
RCS and Antenna measurement accuracy critically depends on the quality of the incident field. Both compact and far field ranges can suffer from a variety of contaminating factors including phenomena such as atmospheric perturbation, clutter, multi-path, as well as Radio Frequency Interference (RFI). Each of these can play a role in distorting the incident field from the ideal plane wave necessary for an accurate measurement. Methods exist to mitigate or at least estimate the measurement uncertainty caused by these effects. However, many of these methods rely on knowledge of the incident field amplitude and phase over the test region. Traditionally the incident field quality is measured directly using an electromagnetic probe antenna which is scanned through the test region. Alternately, a scattering object such as a sphere or corner reflector is used and the scattered field measured as the object is moved through the field. In both cases the probe/scatterer must be mounted on a structure to move and report the position in the field. This support structure itself acts as a moving clutter source that perturbs the incident field being measured. Researchers at the Air Force Institute of Technology (AFIT) have recently investigated a concept that aims to eliminate this clutter source entirely. The idea is to leverage the advances in drone technology to create a free flying field probe that doesn’t require any support structure. We explore this concept in our paper, detailing the design, hardware, and software developments required to perform a concept demonstration measurement in AFIT’s RCS measurement facility. Measured data from several characterization tests will be presented to validate the method. The analysis will include an estimate of the applicability of the technique to a large outdoor RCS measurement facility.
At the Boeing 9-77 Range, we often encountered the need to support test objects of light to heavy weights with dielectric strings and fishing ropes of varying sizes from small to large. Unlike a metallic material, which reflects the waves from its surface, the dielectric material is a volume scatterer [1]. Usually, the radar echoes from the strings or ropes at broadside to the wave-front are the highest, then they fall off quickly with angles away from normal. In this paper we discuss several interesting cases learned, namely: a). To deduce the dielectric constant of a rope by the ratio of co-pol to x-pol echoes. b). To estimate the effective radius of a rope after being stretched under a heavy load. c). Observation of interference between two or more scatterers in the same scene. d). To process the angular dependent radar data of a tightly stretched rope as a field-probe along that rope. This paper is prepared in memory of and dedicated to a great teacher and friend on RCS [2]. ---------------------------------------------- ** Sam Wei is at: 4123 - 205th Ave. SE, Sammamish, WA 98075-9600. Email: paxwei3@gmail.com, Tel. (425) 392-0175 [1]. E. F. Knott, "Radar Cross Section Measurements," (Van Nostrand Reinhold, New York, 1993), Chapter 3, Target Support Structures, Section 3.2, String Supports, pp. 85-98. [2]. In Memoriam: Eugene Knott, IEEE Antennas and Propagation Magazine, vol. 56, No. 3, June 2014, pp. 132-133.
Dual-calibration was first proposed by Chizever et al. in 1996 [AMTA'1996] and had get wide applications in evaluation of the uncertainty in radar cross section (RCS) measurement and calibration. In 2013, LaHaie proposed a new technique based on jointly minimizing the mean squared error (MMSE) [AMTA'2013] among the calibrated RCS of multiple calibration artifacts, which estimates both the calibration function and the calibration uncertainty for each artifact. MMSE greatly improves the estimation accuracy for the radar calibration function as well as results in lower residual and RCS calibration errors. This paper presents a modified version of LaHaie's MMSE by minimizing the weighted mean squared error (MWMSE) for RCS calibration processing from multiple calibrator measurements, which is related to the following functions and parameters: the calibration function; the theoretical and measured RCS; the number of calibration artifacts the number of frequency samples and the weight for ith calibration artifacts which may be defined in terms of the theoretical RCS of all the calibration artifacts. For example, if the weight is defined as the inverse of the total theoretical RCS of the ith calibration artifacts for all frequency samples, the error then represents the total relative calibration error instead of an absolute error as in MMSE. MWMSE then means that an optimal calibration function is found in terms of minimum total relative calibration error, which is expected for most applications. Numerical simulation results are presented to demonstrate the usefulness of the proposed technique.
Mathew Lukacs,Peter Collins, Michael Temple, November 2015
The cost of quality is critical to all industrial processes including microwave device production. Microwave device production is often labor intensive and subject to many production defects. Early detection of these defects can markedly improve production quality and reduce cost. A novel approach to industrial defect detection has been demonstrated using a random noise radar (RNR), coupled with Radio Frequency Distinctive Native Attributes (RF-DNA) fingerprinting processing algorithms to non-destructively interrogate microwave devices. The RNR is uniquely suitable since it uses an Ultra Wideband (UWB) noise waveform as an active interrogation method that will not cause damage to sensitive microwave components and multiple RNRs can operate simultaneously in close proximity, allowing for significant parallelization of defect detection systems. The ability to classify defective microwave antennas and phased array elements (prior to RF system assembly) has been successfully demonstrated and presented at the 36th AMTA symposium. This paper expands on the prior research by focusing on the effects of altering interrogation signal characteristics to include operational bandwidth and signal frequency while actively interrogating similar antennas using an UWB noise signal. The focus of the experimental variation was to optimize classifier performance since unique device characteristics will be excited by various interrogation signal traits that can be exploited by the fingerprint generation and classifier algorithms. Experimentation with several typical UWB antennas and a phased array antenna is demonstrated. The effects of signal bandwidth on classifier performance on simulated fault conditions was performed using various antenna terminations and attenuators. Interrogation of the phased array was demonstrated using the array “backend” for signal down-conversion enabling a quick quality check control method with a simple back-end connection. The ability to wirelessly discriminate multiple fault conditions on individual phased array elements and discern phased array operational range of motion, both in pristine and heavy RFI environments is also shown. This method ensures that each produced phased array meets quality and operational requirements.
Robert Geise,Georg Zimmer, Bjoern Neubauer, November 2015
The radar cross section is the standardized measure for describing scattering of objects. It is however always associated with the idealized propagation model of the Friis transmission equation with several constraints such as plane wave illumination. This contribution discusses the limited applicability of the RCS in some relevant scattering scenarios, e.g. objects like aircraft on ground or induced Doppler shifts from moving objects. In particular, the latter is a current research topic for radar and rotating wind turbines with strong impact on air traffic management. A new and more general description of scattering phenomena is proposed the standard RCS is just a subset of which for static objects under ideal illumination. It actually defines deviations from the ideal plane wave propagation allowing also to include amplitude and frequency modulation of a scattering propagation channel. In analogy to abstract concepts of communication engineering this quantity can be considered and understood as a wave response of a scattering object that can be applied to time-variant propagation channels. A corresponding setup is presented on how to measure this wave response of scattering objects. Measurement examples are shown in a scaled measurement environment for moving, respectively rotating objects, especially for bistatic scattering configurations. Additionally, the illumination issue of objects is discussed reviewing scattering scenarios related to the instrument landing system.
As millimeter-wave applications become more widely available technologies, there is a demand to know material properties for design and application purposes. However, many mass produced materials are either not specified at these frequencies or the price materials can be costly. Therefore the easiest method for characterization is by measurement. Traditional methods of this measurement type involve the reflectivity of a fabric sample placed on a flat metallic reference plate. However, this method has some major difficulties at these high frequencies. For example, the surface of the reference plate must be very flat and smooth and must be carefully oriented such that their surface is precisely facing the transmitting and receive and antennas. Furthermore the electrically large size of the reference plate of this setup makes it difficult to measure in far-field and anechoic range time is expensive. Resistive and conductive fabrics have applications such as shielding, anti-static, and radio wave absorption. Radio wave absorption and radar cross section engineering is currently of high interest to the automotive industry for testing newly emerging automotive radar systems. Such fabric measurement has already been utilized to accurately characterize artificial skin for radar mannequins to recreate the backscattering of human targets at 77 GHz. This paper presents a new and convenient method for measuring the reflective properties of conductive and resistive materials at millimeter wave frequencies by wrapping fabrics around a metallic reference cylinder. This new approach to fabric characterization method is able to obtain higher accuracy and repeatability despite the difficulties of measuring at high frequency.
An uncertainty budget for Indoor Radar Cross Section (RCS) measurements contains many contributors. Typically, one of the largest contributors comes from the Quiet Zone quality. To quantify the ripple and the tapper in the Compact Range Quiet Zone of the CEA’s indoor facility CAMELIA, a diagnosis method has been implemented, exploiting the radar response of a moving sphere located on a polystyrene mast. This polystyrene mast is fixed on the top of a linear-translating table over an azimuth positioner. The combination of the two axis capabilities allows to locate the PEC sphere in a horizontal plane cut of the quiet test zone volume. The other cuts at different altitudes are performed by changing the height of the polystyrene mast. This method samples the magnitude of the illuminating field at fixed spatial points (controlled by a laser tracking) in the Test Zone to determine the magnitude of the ripple and thus the Quiet Zone. These experimental data are then statistically processed to determine the measurement uncertainty at a given frequency. This paper introduces and analyses the results of a measurement campaign dedicated to the characterization of the Quiet Zone of the CEA’s indoor facility CAMELIA.
Recently, the 5 GHz bands have become increasingly attractive for the wireless industry due to the large amount of unlicensed spectrum available and less congested than the 2.4 GHz band. For this reason, WiFi standards 802.11a/h/j/n/ac operate in the 5 GHz band and its use is also being proposed for LTE-U (LTE-Unlicensed), which will use the unlicensed spectrum in this band for increasing the capacity of LTE (Long-Term Evolution) networks. However, this band is allocated on a primary basis to aeronautical and satellite services, meteorological and military radars and other federal and non-federal uses. In this context, it is necessary to perform additional propagation and interference studies in order to characterize the 5 GHz mobile radio channel considering its current uses and future applications. This work contains measurements and characterization of 5 GHz mobile radio channel along indoor and indoor to outdoor paths using a novel narrowband propagation measurement system. This system, developed at the Institute for Telecommunications Sciences (NTIA/ITS), consists of a vector signal analyzer and highly stable oscillators. The stability, precision and flexibility of the system permit post-processing the baseband complex received signals in order to analyze the channel characteristics. We have performed narrowband measurements on the 5.41 GHz mobile radio channel in four different scenarios: indoor with line of sight, indoor through walls, indoor through different floors and indoor to outdoor. The data collected has been processed for estimating the path loss (including the attenuation factors and path loss exponents), fading statistics and Doppler power spectrum for each scenario. We also show that the processing permits the extraction of accurate information about the scattering environment. The results permit characterizing the 5 GHz mobile radio channel for future spectrum sharing designs, as well as for network planning and capacity planning for WiFi and cellular applications in this band.
Maria C. Gonzalez,Christian Hurd, Jose Enrique Almanza Medina, Xiaoguang Liu, November 2015
To determine the proper moisture content in the soil is critical to get maximum grow in plants and crops and its estimation it is used to regulate the amount of irrigation that it is needed. For this reason, many sensors that measure water content have been developed to give the grower some feedback of the water content. Some methods such as the ones based in gravimetric properties are accurate but labor consuming, other such as the tension meters require periodic service, the neutron probe is also accurate but expensive. The more popular sensor is based in electrical resistance measurement that gives acceptable accuracy and it is not expensive. However, this sensor has the disadvantage that needs to be buried in the soil. Here, we are exploring the characteristics of electromagnetic propagation and its scattering properties as a tool to identify the physical soil composition. The presence of water changes drastically the dielectric properties of the soil affecting the reflected signal. In this research, we are assessing the viability of a sensor based in FMCW radar technology for water detection with the advantage of being portable and low cost. The research involves the fabrication of a directive antenna operating in a broadband regimen, transmitter/ receiver circuit and the signal processing of the return signal adjusted to the detection of moisture in soil. We present the calibration methods and graphic results of the intensity of the reflected signal of dry bare soil, wet soil, and soil covered by plants.
Michitaka Ameya,Satoru Kurokawa, Masanobu Hirose, November 2015
In this paper, we propose a calibration method for monostatic radar cross section (RCS) of simple radar targets (e.g. trihedral corner reflectors and square flat-plate reflectors) using extrapolation method. By the proposed method, we can calibrate the monostatic RCS of radar targets from 1-port S-parameter measurements. In our system, the applicable size of radar targets are 75 mm to 125 mm for corner reflectors and 40 mm to 75 mm for square flat-plate reflectors, respectively. The nominal RCS of reflector targets calculated by physical optics ranges from +3 dBsm to +15 dBsm in W-band. The measured results are agree well with simulation results calculated by method of moment (MoM).
Inverse Synthetic Aperture Radar (ISAR) measurements are used in this study to obtain images of full scale targets placed on a turntable. The images of the targets are extracted using compressed sensing methods. The extracted target images are edited and merged into measured Synthetic Aperture Radar (SAR) images. Airborne SAR field trials are complicated and expensive. This means that it is important to use the acquired data efficiently when areas with different background characteristics are imaged. One would also like to evaluate the signature of targets in these background scenes. Ideally, each target should then be measured for many orientations as well as illumination angles which would result in a large number of measurement cases. A more efficient solution is to use ground based ISAR measurements of the desired targets and then blend these images into the SAR scene. We propose a SAR blending method where a noise free image of the target is extracted from the RCS measurement by using the compressed sensing method Basis pursuit denoise (BPDN) and then solving for a model consisting of point scatterers. The target signature point scatterers are then merged into a point scatterer representation of the SAR background scene. The total point scatterer RCS is evaluated in the frequency-angle domain followed by using that RCS for back projection to form a seamless SAR image containing the target with the desired orientation and aspect angle. A geometrically correct shadow, constructed from a CAD-model of the target, is edited into the background. The process is completed by adding noise to the image consistent with the estimated SNR of the SAR-system. The method is demonstrated with turntable measurements of a full scale target, with and without camouflage, signature extraction and blending into a SAR background. We find that the method provides an efficient way of evaluating measured target signatures in measured backgrounds.
This paper gives a review of cross-eye (CE) jamming using the retro-directive channel implementation. CE jamming is an electronic warfare self-protection technique in which the phase-front of an electromagnetic wave, transmitted towards a threat radar, is distorted in a way similar to radar glint. A retro-directive channel is used in the implementing of the CE jammer to avoid prohibitive tolerance requirements on the electronic warfare (EW) system. In a practical implementation of the CE jammer in an EW system, active electronically scanned array antennas (AESA) can be used to fulfil effective radiated power requirements. The achievable reciprocity i.e. similarity between the transmission and reception radiation patterns in the AESA is central to the performance of the CE jammer system. Effects of the CE jammer on mono-pulse radar are presented and described. The effects include the mixing of a CE jammer signal and a target echo. The CE jammer can induce false target angles and prevent the radar from finding a stable settling angle. The origin of CE jamming is in the field of radar multipath phenomenon such as glint and reflections from water surfaces. The CE jamming technique has previously been described and analyzed in various literature. This paper summarizes the most recently published results and gives references to the publications.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.