AMTA Paper Archive

 

Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)

 

Search AMTA Paper Archive
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Polarization
Cross polarization measurement accuracy improvement on a single reflector compact range
D. Cook (Scientific-Atlanta, Inc.),J.H. Cook (Scientific-Atlanta, Inc.), R. Kaffezakis (Scientific-Atlanta, Inc.), November 1996
Scientific-Atlanta has developed a new algorithm for obtaining high accuracy cross-polarization measurements from prime focus, single reflector, compact ranges. The algorithm reduced cross-polarization extraneous signals to levels that rival or exceed much more expensive dual reflector systems, but with the associated cost and simplicity of a single reflector system. This paper provides an overview of the new algorithm. It explains the limitations on conventional polarization measurements in single reflector systems and the methods for overcoming these limitations without error correction for some antennas. A method for determining if error correction is needed for a particular antenna is reviewed and the fundamentals of the error correction algorithm are explained. Preliminary test results are provided.
Use of GPS satellite signals to evaluate GPS automotive antennas
E. Walton (The Ohio State University ElectroScience Laboratory),D. Justmann (The Ohio State University ElectroScience Laboratory), November 1996
The use of global positioning satellite (GPS) signals for automotive navigation and this on-vehicle GPS antennas has become more common recently. As the number of users increases the cost of the highly integrated receiver is predicted to come down to less than $50. It is possible to measure the antenna patterns of GPS antennas as installed on vehicles, but it is important to make sure that the parameters measured are valid for the GPS environment. In this case, sky coverage and polarization are more important than the directive pattern, for example. This paper shows a method of comparing a number of antennas by using the actual GPS satellite signals as test signals.
A Planar near-field system with high precision 22M x 8M vertical scanner
M. Pinkasy (Orbit Advanced Technologies),E. Katz (Orbit Advanced Technologies Ltd.) J. Torenberg (Orbit Advanced Technologies Ltd.) S. Dreisin (Orbit Advanced Technologies Ltd.) A. Geva (Orbit Advanced Technologies Ltd.) M. Bates (Orbit Advanced Technologies Inc.), November 1996
A new 1-50 GHz Near-Field measurement system is now in operation at Matra Marconi Space, Portsmouth, UK. The system has the largest vertical planar scanner installed so far. The planar scanner is constructed of steel and has four moving axes: 22 meter horizontal X axis, 8 meter vertical Y axis, 25 cm Z axis for probe alignment and a 540o Roll axis for polarization. Precision bearings are used to ensure straightness over the full length of the X-Y travel. The vertical Y axis is exceptionally fast, 500 mm/sec, to minimize acquisition time. The scanner has extremely high positioning accuracy and planarity - ±0.2 mm over the entire 22m x 8m range – allowing uncorrected operation (without laser) up to 26.5 GHz. To achieve higher accuracy and a higher frequency range an advanced 3-axis (X, Y, Z) laser correction system automatically creates correction tables for use by the transformation routines. The scanner’s exceptional repeatability allows the use of correction tables created off-line, without need for an on-line laser correction system, considerably reducing measurement time. To create these correction tables, the scanner is fitted with laser interferometers for X and Y axes and with a spinning-diode laser to calibrate for planarity. Additional features include a shielded constant-radius cable carrier, giving minimal phase errors due to cable flexing.
Planar slot spiral for multi-function communication apertures, A
M.W. Nurnberger,J.L. Volakis, November 1997
A slot spiral antenna and its associated feed are presented for conformal mounting on a variety of land, air, and sea vehicles. By exploiting the inherent broadband behavior good pattern coverage and polarization diversity of the spiral antenna, a conformal antenna which can be concurrently used for cellular, digital personal communications (PCS), global positioning (GPS) and intelligent vehicle highway systems (IVHS) as well as wireless LAN networks has been developed. A key requirement for achiev­ ing such broadband behavior (800-3000MHz) is the avail­ ability of a broadband planar feed and balun. Such a feed was proposed last year by the authors. However, addi­ tional design improvements were found to be necessary to achieve satisfactory pattern and gain performance. Among them were a broadband termination for the spiral arms and the suppression of cavity and waveguide modes. Both of these improvements played a critical role in achieving acceptable performance over the 800-3000 MHz bandwidth. After a general description of the slot spiral antenna and the above modifications, this paper presents a comparison of the performance before and after the modifications.
Cylindrical near-field measurement of L-band antennas
J. Chenoweth,T. Speicher, November 1997
Andrew Corporation, founded in 1937 and headquartered in Orland Park, Illinois, has evolved into a worldwide supplier of communication products and systems. To develop a superior, high performance line of base station products for a very competitive marketplace, several new antenna measurement systems and upgrades to existing facilities were implemented. This engineering project developed an indoor test range facility incorporating design tool advantages from among Andrew Corporation's other antenna test facilities. This paper presents a 22-foot vertical by 5-foot diameter cylindrical near-field measurement system designed by Nearfield Systems Incorporated of Carson, California. This system is capable of measuring frequencies ranging from 800 MHz to 4 GHz, omnidirectional and panel type base station antennas up to twelve feet tall having horizontal, vertical or slant (+/- 45 degree) polarizations. Far-field patterns, near-field data and even individual element amplitude and phases are graphically displayed.
Dual shaped reflector feed system supressing cross polarized components for compact antenna test range
M. Takabayashi,H. Deguchi, N. Miyahara, November 1997
This paper presents a design of dual shaped reflector feed system suppressing cross polarized components for compact antenna test range(CATR). This system consists of a parabolic main reflector, two shaped reflectors and primary horn. As for co-polarization characteristics, these subreflectors are shaped to achieve a plane wave with uniform amplitude in a test zone. As for cross polarization characteristics, cross polarized components are eliminated in following way. An initial reflector system before shaping is satisfied with a condition of eliminating cross polarized components based on a beam mode expansion technique. This condition needs more than three quadratic reflectors, and frequency independent design can be derived. In this paper, the effect of higher order modes are considered. When shaping reflectors, however, additional cross polarized components are generated and the condition of eliminating cross polarized components is not satisfied. In this paper, a correction method of the cross polarization is also presented. A design result shows that the system has a test zone of 2.5m diameter and in test zone, lower ±0.5dB amplitude ripple, ±4.5° phase ripple and lower -44dB are achieved.
Experimental measurement techniques for automotive antennas
R. Abou-Jaoude,E. Walton, November 1997
In this paper we will compare different techniques that can be used to measure the performance of automobile antennas. The use of indoor scale-model and outdoor full-scale range measurements will be discussed. These range­type techniques characterize the engineering parameters of the antenna using signals with well defined polarizations and angles of arrival. These techniques are important in the initial stages of the antenna development. In the final stages of automobile antenna development, it is important to know how well the antenna will perform in the "real-world". We have developed mobile measurement techniques that use commercial off-the-air signals to characterize the performance of the automobile antenna in the real-world environment. We will describe three different systems that were developed to measure the performance of AM/FM, cellular, and GPS antennas.
Bistatic cross-polarization calibration
R.J. Jost,R.F. Fahlsing, November 1997
Calibration of monostatic radar cross section (RCS) has been studied extensively over many years, leading to many approaches, with varying degrees of success. To this day, there is still significant debate over how it should be done. In the case of bistatic RCS measurements, the lack of information concerning calibration techniques is even greater. This paper will present the results of a preliminary investigation into calibration techniques and their suitability for use in the correction of cross-polarization errors when data is collected in a bistatic configuration. Such issues as calibration targets and techniques, system stability requirements, etc. will be discussed. Results will be presented for data collected in the C and X bands on potential calibration targets. Recommendations for future efforts will also be presented.
RCS characterization on a portable pit with a foam column at VHF/UHF
M. Husar,J.H. Eggleston, November 1997
The RATSCAT radar cross section (RCS) measurement facility at Holloman AFB, NM is working to satisfy DoD and customer desires for certified RCS data. This paper discusses the low frequency characterization of the RATSCAT VHF/UHF Measurement System (RVUMS). The characterization was conducted on a portable pit with a 30' foam column at the RAMS site. System noise, clutter, backgrounds and generic target measurements are presented and discussed. Potential error sources are examined. The use of background subtraction and full polarimetric calibration are presented. Potential errors, which can occur from using certain cross-pol calibration techniques, are discussed. The phase relationship between each polarization components of the scattering matrix and cross-pol validation techniques are considered.
ERP Measurement Issues
R.B. Dybdal, November 1998
Measurements of the ERP radiated by an antenna and the ERP received from a distant antenna are addressed. Alternative measurement techniques are described and correction for polarization mismatch loss, pointing error and propagation loss is discussed. The statistics of the measurement errors are presented for error budget projections of measurement accuracy.
Phased-Array Simulation for Antenna Test Range Design
D.J. Van Rensburg, November 1998
A simulation tool used during the design of near-field ranges for phased array antenna testing is presented. This tool allows the accurate determination of scanner size for testing phased array antennas under steered beam conditions. Estimates can be formed of measured antenna pointing accuracy, side lobe levels, polarization purity, and pattern performance for a chosen rectangular phased array of specified size and aperture distribution. This tool further allows for the accurate testing of software holographic capabilities.
Full Polarimetric Calibration for RCS Measurement Ranges: Performance Analysis and Measurement Results
B.M. Welsh,A.L. Buterbaugh, B.M. Kent, L.A. Muth, November 1998
Full polarimetric scattering measurements are increasingly being required for radar cross-section (RCS) tests. Conventional co-and cross-polarization calibrations fail to take into account the small amount of antenna cross-polarization that will be present for any practical antenna. In contrast, full polarimetric calibrations take into account and compensate for the cross-polarization the calibration process. We present a full polarimetric calibration procedure and a simulation-based performance study quantifying how well the procedure improves measurement accuracy over conventional independent channel calibration.
Spherical Coordinate Systems for Defining Directions and Polarization Components in Antenna Measurements
A.C. Newell, November 1998
The results of theoretical calculations or measurements for antennas are generally given in terms of the vector components of the :radiated electric field as a function of direction or position. Both the vector components and the direction parameters must be defined with respect to a coordinate system fixed to the antenna. Along the principal planes there is no ambiguity about the terms such as vertical or horizontal component, but off the principal planes the definition of directions and vector components depends on how the spherical coordinate system is defined. This paper will define four different spherical coordinates that are commonly used in measurements and calculations, and propose a terminology that is useful to distinguish between them, and define the mathematical transformations between them. These concepts are essential when the results of different measurements or calculations are compared or when an antenna's orientation is changed. Both mathematical and graphical representations will be presented.
Fresnel-Zone Measurement and Analysis of a Dual-Polarized Meteorological Radar Antenna
D.B. Hayman,G.C. James, T.S. Bird, November 1998
The use of dual polarization in meteorological radars offers significant advantages over single polarization. Recently a standard single-polarization Cuband radar was upgraded to operate in dual-polarization mode. The antenna has a 4.2m diameter parabolic reflector with a prime-focus feed. A spherical Fresnel-zone holographic technique was used to obtain the radiation pattern for the upgraded antenna. The sidelobes were higher than predicted and so the data was analyzed to identify the relative contributions of shadowing from the feed crook and surface errors in the dish. This paper describes practical considerations in the measurement of this antenna and the analysis of the results.
Uncertainties in Measuring Circularly Polarized Antennas
P.R. Rousseau, November 1998
Three common methods of measuring circularly antennas on a far-zone range are: using a spinning linear source antenna (SPIN-LIN), measuring the magnitude and with a linearly polarized source antenna in two orthogonal positions (MAG-PHS), and using a circularly polarized source antenna (CIRC-SRC). The MAG-PHS and CIRC-SRC methods are also used in a near-field or com­ pact range. The SPIN-LIN method is useful because an accur te measurement of the axial ratio and gain can be made without the need to measure phase. The MAG-PHS method is the most general method and can also completely characterize the polarization of the test antenna. The CIRC-SRC method is the simplest and least time-consuming measurement if the antenna response to only one polarization is needed. The choice of measurement method is dictated by schedule, accuracy requirements, and budget. An analysis is presented that provides errors in the measured gain, relative gain pattern, and phase of the test antenna depending on the polarization characteristics of the source and test antennas. These results are useful for deciding which measurement method is the most appropriate to use for a particular job. These results are also useful when constructing more complete error budgets.
Quantifying the Effect of Position Errors in Spherical Near-Field Measurements
A.C. Newell,G. Hindman, November 1998
Concise mathematical relations have been derived for Planar Near-Field measurements that quantify the effects of x, y and z-position errors on antenna parameters such as gain, sidelobe level, pointing, and cross polarization. Because of the complexity of the theory, similar relations for spherical near-field measurements have not been developed. The requirements for the spherical coordinate system are generally defined in terms of the alignment parameters such as orthogonality and intersection of axes, q-zero, x­ zero and y-zero rather than individual errors in q , f and r. Mechanical, optical and electrical techniques have been developed to achieve these alignments. This paper will report on the development of methods to estimate the antenna parameter errors that will result from spherical alignment errors for typical antennas.
Probe Calibration Using Time Domain Gating and Off-Bench Optical Alignment
A. Haile,J.C. Nichols, S.A. Marschke, November 1998
Probe correction is required to accurately determine the far-field pattern of an antenna from near-field measurements. At Raytheon Primary Standards Laboratory (PSL) in El Segundo, CA, data acquisition hardware, instrument control software, and a mechanical positioning system have been developed and used with an HP Network Analyzer/Receiver system to perform these measurements. Using a three antenna technique, the on-axis and polarization parameters of a linearly (or circularly) polarized probe are calibrated. The relative far-field pattern of the probe is then measured utilizing the two nominal, orthogonal polarizations of the source antenna. All measurements are stepped in frequency and use a time domain gating technique. The probe and the source antenna are optically aligned to the interface and unique, kinematic designed interface flanges allow repeatable mounting of the antennas to the test station.
Full Scattering Matrix Calibration with Error Analysis
R.J. Jost,R.F. Fahlsing, November 1998
Calibration of monostatic radar cross section (RCS) has been studied extensively over many years, leading to many approaches, with varying degrees of success. To this day, there is still significant debate over how it should be done. It is almost a certainty, that if someone proposes a way to calibrate RCS data, someone else will come up with reasons as to why the "new" approach will not yield results that are "good enough." In the case of full scattering matrix RCS measurements, the lack of information concerning calibration techniques is even greater. The Air Force's Radar Target Scattering Facility (RATSCAT) at Holloman AFB, NM,has begun an effort to refine monostatic and bistatic cross polarization measurements at various radar bands. For the purposes of this paper, we have concentrated on our monostatic cross polarization developments. Such issues as calibration targets and techniques, system stability requirements, etc. will be discussed. During several programs we have attempted to collect sufficient data to do full scattering matrix corrections. In a previous paper, "Bistatic Cross-Polarization Calibration," our collected data had a high background which obscured much of the cross polarized return. The data presented here is from a program conducted at RATSCAT recently which utilized the Ka band. Because of the sensitivity of measurements at Ka to many effects, an error estimate was required. This paper presents this error estimation and some results of full scattering matrix correction of RCS data. This analysis is based upon "The Proposed Uncertainty Analysis for RCS Measurements", NISTIR 5019, by R. C. Wittmann, M. H. Francis, L. A. Muth and R. L. Lewis. This paper was aimed at principle pole measurements, e.g. HH and VV. The tabular data presented in the paper are from this paper with additions for errors associated with cross polarization and cross polarization correction.
33 m by 16 m Near-Field Measurement System
T. Speicher,M. Niwata, S. Sapmaz, November 1998
Nearfield Systems, Inc. (NSI) has delivered the world's largest vertical near-field measurement system. With a 30m by 16m scan area and a frequency range of 1GHz to 50GHz, the system consists of a robotic scanner, laser optical position correction, computer and microwave subsystems. The scanner and microwave equipment are installed in an anechoic chamber 40m in length by 24m in width by 25m in height. The robotic scanner controls the probe positioning for the 33m by 16m vertical scanner using X, Y, Z and polarization axes. The optical measurement package precisely determines the X and Y axes position, alignment errors along the X and Y axes, and Z-planarity over the XY scan plane.
Crosspolar Correction in Far-Field and Compact Range Antenna Measurements
P.L. Garcia Miller, November 1998
Offset parabolic reflector Compact Ranges are limited for cross polarization measurements in comparison to compensated dual reflector systems. This means that, in some cases, the crosspolar measurements at low levels show a significant content of the compact range reflector cross polar. An investigation has been carried out at INTA to reduce the crosspolarization measurement errors levels to those of a compensated dual reflector system by the application of vector deconvolution techniques. Results are shown of the validation of the algorithm in a far-field range where a crosspolar field is introduced by depointing the transmitter antenna.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.