AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Spherical Near-Field Measurements of Satellite Antennas at Extreme Temperatures
A Giacomini, V Schirosi, A Martellosio, L J Foged, C Feat, J Sinigaglia, S Leroy, F Viguier, M Moscetti Castellani, D Cardoni, A Maraca, F Rinalducci, L Rolo, October 2019
Antenna systems commonly used in space applications, are often exposed to extreme environmental conditions and to significant temperature variation. Thermal stress may induce structural deformations of the radiators or affect the RF performance of the active front-ends. These are some of the reasons that pushed the testing technology to characterize the radiating proprieties of Antennas Under Test (AUT) in realistic thermal conditions. Testing facilities available for these purposes are nowadays typically limited in terms of temperature range, measurable radiation pattern and size of the AUT. This paper describes the multi-physics design considerations (i.e. thermal, structural and RF) for the development of a novel facility to evaluate AUT radiation pattern characteristics in thermal conditions, from L to Q band, as an add-on feature to the ESA-ESTEC Hybrid European RF and Antenna Test Zone (HERTZ), located in Noordwijk (The Netherlands). The goal is to extend such a testing to AUTs up to 2.4m diameter in envelope over an extreme temperature range (+/-120°C), allowing a free movement of the AUT and taking advantage of Spherical Near-Field (SNF) measurement techniques.
Bandwidth response of a reflectarray antenna working as a Compact Antenna Test Range probe
A F Vaquero, M Arrebola, M R Pino, October 2019
A reflectarray antenna working at 28 GHz is proposed to replace the reflector antenna of a Compact Antenna Test Range (CATR) system. As a first approach, the quiet zone obtained using a far-field collimated reflectarray is analysed. Due to the size of this area is not large enough, the generalized Intersection Approach is employed to carry out an optimization of the near-field for both phase and amplitude in order to maximize the size of the quiet zone at one plane. Simulations are compared for the near-field before and after the optimization process, showing an important enhancement of the size of the quiet zone, especially in the main cuts. From the obtained phase distribution a design is carried out. The unit cell chosen is based on a two-layer stacked patch, having good agreement between optimization and design results. Finally, the bandwidth response of the designed reflectarray is analysed, in order to assess its performances as probe in a CATR system.
Near-field multi-focusing transmitarray optimization for multi-position feed
A F Vaquero, M Arrebola, M R Pino, October 2019
A transmitarray antenna is proposed as a multi-focusing antenna in the near-field region with capability for focus scanning and/or simultaneous and independent focus spots generation at 28 GHz. The transmitarray optics is defined for a centred configuration and the elements are designed to focus the radiated near-field at a given point. Then, a number of feeds is placed along arcs in the principal planes and the near-field generated by the transmitarray when its illuminated by each one is obtained, demonstrating the capability to generate multiple independent near-field spots. The focusing performance is improved for the centered feed through a Phase-Only synthesis technique based on the generalized Intersection Approach in near-field. Finally, the spots produced by the whole cluster are calculated, demonstrating the overall improvement and validating the designing process. This configuration can be applied in near-field systems as radar for surface inspection, measurement systems or wireless power transfer among others.
Generalized Test-Zone Field Compensation
T M Gemmer, D Heberling, October 2019
Antenna measurement errors occur due to reflections and diffractions within the measuring chamber. In order to extract and correct the undesired signals, a technique based on test-zone field compensation and spherical wave expansion is applied to Compact Antenna Test Range (CATR) and Spherical Near-Field (SNF) measurements of a base transceiver station antenna. The required spherical test-zone field is acquired by simulating the corresponding measurement environment with the multi-level fast multipole method. Due to the numerical complexity of the problem, only the parts of the chamber with a significant influence on the measurement results are modeled. Comparing the determined directivities after applying the correction method, an exact overlap is achieved between the SNF and CATR solution.
Impact of Phase Curvature on Measuring 5G Millimeter Wave Devices
A Scannavini, F Saccardi, L J Foged, Kun Zhao, , ,, October 2019
Wireless industry through 3GPP has standardized 5G in both FR1 (sub 6 GHz) and FR2 (24.25-52.6 GHz) frequency ranges. While FR1 will be using frequencies already in place for LTE-4G technology, FR2 is dealing with mmWave frequencies. Due to the high free space path loss (FSPL), 5G at mmWave would impose the use of directive antennas on both ends of the communication link, the User Equipment (UE) and the Base Station (BS). A black box approach (i.e. the location of the antenna within the device is unknown) has been agreed to be used for Over The Air (OTA) measurements. The physical center of the device must be aligned with the center of the measurement setup. Hence, the test antennas will likely be offset with respect to the center of the coordinate system. The measurement distance will be for most systems sufficient to minimize the amplitude error while will introduce a phase deviation between the actual spherical wave and the desired plane wave which may cause an effective phase shaping of the radiated beam of the small phased array under test. In this paper we will analyze the impact of the phase curvature on the beam antenna pattern and spherical coverage for the different testing environments. Specifically, simulation of a 5G terminal device with multiple beams will be considered and realistic spherical near field measurement at different finite distances will be emulated also taking into account different measurement antennas (probes).
Experimental validation of Reference Chip Antennas for 5G Measurement Facilities at mm-Wave
A Giacomini, L Scialacqua, F Saccardi, L J Foged, E Szpindor, W Zhang, M Oliveira, P O Iversen, J M Baracco, October 2019
In this paper, the experimental validation of a micro-probe fed reference antenna targeting the upcoming 5G applications (24.25-29.5GHz band) is presented. The main purpose of these reference antennas is to serve as "gold standards" and to perform gain calibration of 5G test facilities through the substitution method. The outline of these antennas is based on a square array of four printed patches enclosed in a circular cavity. The RF input interface is a stripline-to-coplanar waveguide transition and allows for feeding the device with a micro-probe. Performance obtained by high-fidelity modeling is reported in the paper and correlated to experimental data. Interaction and unwanted coupling with the test equipment are discussed. The use of echo-reduction techniques and spatial filtering is investigated to mitigate these effects.
A Simple High-Perfomance P-Band First-Order Dual-Port Probe for Spherical Near-Field Antenna Measurements based on the Shorted Annular Patch Antenna
M Brandt-Møller, M Fröhner, O Breinbjerg, October 2019
This paper presents a new type of P-band first-order dual-port probe for spherical near-field antenna measurements. The probe is based on the well-known shorted annular patch antenna but some extensions are introduced for the probe application. This probe is mechanically simple which facilitates its manufacturing and operation. In addition, it has high performance for impedance bandwidth, pattern, directivity, and gain.
Practical Considerations in Compressed Spherical Near-Field Measurements
Cosme Culotta-López, Brett Walkenhorst, Quang Ton, Dirk Heberling, October 2019
The major drawback of Spherical Near-Field (SNF) measurements is the comparatively long measurement time, since the scanning of a whole sphere enclosing an Antenna Under Test (AUT) is required to calculate the Spherical Mode Coefficients (SMCs) required for the computation of the far field. Since the SMCs prove to be sparse under certain conditions, efforts have been made to apply compressed-sensing techniques to reduce the measurement time by acquiring a smaller number of sampling points. These approaches have been successfully tested in simulation using classically acquired measured data. This decouples the measurements from practical problems, such as basis mismatch due to the finite precision of the mechanical positioner and environment effects. In this paper, results from a sparse data acquisition performed with a physical system are reported. To decouple the error introduced by the approach itself from the error introduced by non-idealities in the measurement system, an AUT is measured using both traditional near-field sampling and compressed near-field sampling. The classically acquired data is used both as reference and as source to simulate a synthetic compressed measurement. The effects introduced by real considerations are calculated by comparison between the synthetic compressed measurement and the acquired one, while the error of both is evaluated by comparison to the reference measurement. The results further demonstrate the viability of this method to accelerate SNF measurements and pave the way for further research.
Improvements in the Measurement of Very Low Cross Polarization Using the Three Antenna Polarization Technique
A C Newell, P Vizcaino, D Gentle, Z Tian, , ,, October 2019
The Three-antenna polarization measurement technique is used to determine the axial ratio, tilt angle and sense of polarization of three antennas from measurements on each of three antenna pairs. The three antennas are generally nominally linearly polarized and the measurement data consists of the change in amplitude from the initial antenna orientation where they are co-polarized to the orientation where one of the antennas is rotated about its axis to the null amplitude position. The sign of the phase change is also noted and the phase change at the null position is known from theoretical calculations to be either plus or minus 90 degrees. The correct sign is determined from the sign of the phase change. For antennas with axial ratios in the range of 50 to 80 dB that will be used as near-field probes or as feeds for reflector antennas, it is imperative to measure the polarization parameters as accurately as possible. The primary source of uncertainty in the measurement is due to scattered signals in the measurement range that arise from multiple reflections between the two antennas and from the absorber on the chamber walls. For antennas with very large axial ratios, the scattered signals can be larger than the true measurement signal. These scattered signals can change the sign of the phase and produce large errors in the amplitude at the null. If the separation distance between the antennas is adjusted after rotating to the null to produce a maximum amplitude, the scattered signal is in phase with the true measurement signal. If the distance is adjusted for the minimum at the null, the scattered and true signals are out of phase. Measurements at these two positions will produce the best measurement of the phase sign and the true amplitude. But if measurements are being performed at a number of frequencies, the maximum and minimum amplitude positions will be different for each frequency, and this will complicate automated multifrequency measurements. New improvements have been developed in the details of the measurements that greatly improve the determination of the phase sign and the amplitude at the null for multiple frequency measurements and these will be described and illustrated in the following paper. With these improvements, the estimated uncertainty of a 60 dB axial ratio is on the order of 1.8 dB. A new technique has also been developed to improve the source correction of the pattern data for probes with large axial ratios that guarantees that the on-axis polarization of the pattern data will be identical to the results of the Three-antenna measurement. The probe correction processing will then produce the highest accuracy results for the polarization of the AUT.
A Robotic Near-Field Antenna Test System Relying on Non-Canonical Transformation Techniques
Daniël Janse Van Rensburg, Brett Walkenhorst, Quang Ton, John Demas, October 2019
A robotic near-field antenna measurement system allowing for acquisition over non-canonical measurement surfaces is presented. The robot consists of a six-axis robotic arm and a seventh axis rotary positioner and the created acquisition surface is parametrically reconfigurable. The near-field to far-field transformation required is also described. The success of the technique is demonstrated through measured results, compared to canonical measurement data.
Portable Laser Guided Robotic Metrology System
Peter A Slater, James M Downey, Marie T Piasecki, Bryan L Schoenholz, October 2019
This paper introduces the new Portable Laser Guided Robotic Metrology (PLGRM) system at the National Aeronautics and Space Administration's (NASA) Glenn Research Center. Previous work used industrial robots in fixed facilities to characterize antennas and required fixtures that do not lend themselves to portable applications. NASA's PLGRM system is designed for in-situ antenna measurements at a remote site. The system consists of a collaborative robot arm mounted on a vertical lift and a laser tracker, each on a mobile base. Together, they enable scanning a surface larger than the robot's reach. To accomplish this, the robot first collects all points within its reach, then the system is moved and the laser tracker is used to relocate the robot before additional points are captured. The PLGRM implementation will be discussed including how safety and planning are combined to effectively characterize antennas. Software defined triggering is a feature, for flexible integration of vector network analyzers and antenna controllers. Lastly, data will be shown to demonstrate system functionality and accuracy.
3D Printed Magneto-Electric Phased Array Antenna for Various 5G New Radio Bands
Connor Laffey, Philip Nguyen, Ghanshyam Mishra, Satish K. Sharma, October 2019
A dual linear polarized 3D printed magneto-electric phased array antenna for various 5G New Radio (NR) frequency bands is proposed and its beam steering performance is investigated. The magneto-electric radiating element exhibits a well-defined stable pattern quality, low variation in the impedance over a wider bandwidth and high port to port isolation in a dual polarization configuration. The analog beamforming network (BFN) of the array is also designed. The fabricated board will be combined with the 3D printed array aperture for experimental verification of the scan performance.
Comparison of Antenna Measurements Obtained Using an Electro-Optical Probe System to Conventional RF Methods
William Dykeman, Benjamin Marshall, Dale Canterbury, Corey Garner, Richard Darragh, Ali Sabet, October 2019
There are certain applications where the use of electro-optical (EO) probes to acquire near-field measurements can provide major advantages as compared to conventional RF measurement techniques. One such application is in the area of high power RF measurements that are required for calibration and test of active electronically scanned arrays (AESA). The family of EO probes presented herein utilizes the Pockels effect to measure the time-varying electric fields of the antenna under test (AUT). The use of a non-invasive, broadband EO probe facilitates measurement of the tangential electric field components very close to the AUT aperture in the reactive near-field region. This close proximity between the AUT and the measurement probe is not possible with conventional metallic probes. In this paper, the far field gain patterns acquired using the EO probe will be compared to the corresponding gain patterns obtained from conventional far-field and near-field methods. The measurement results, along with the advantages and disadvantages of the EO system configuration, will be presented.
Recent Changes to the IEEE std 1502 Recommended Practice for Radar Cross-Section Test Procedures
Eric Mokole, Vince Rodriguez, Jeff Fordham, L J Foged, ,, October 2019
Radar scattering is typically represented as the RCS of the test object. The term RCS evolved from the basic metric for radar scattering: the ratio of the power scattered from an object in units of power per solid angle (steradians) normalized to the plane-wave illumination in units of power per unit area. The RCS is thus given in units of area (or effective cross-sectional area of the target, hence the name). Note that the RCS of the test object is a property of the test object alone; it is neither a function of the radar system nor the distance between the radar and the test object, if the object is in the far field. Because the RCS of a target can have large amplitude variation in frequency and angle, it is expressed in units of decibels with respect to a square meter and is abbreviated as dBsm (sometimes DBSM or dBm2). In terms of this definition, the RCS of a radar target is a scalar ratio of powers. If the effects of polarization and phase are included, the scattering can be expressed as a complex polarimetric scattering (CPS) matrix. The measurement of the RCS of a test object requires the test object to be illuminated by an electromagnetic plane wave and the resultant scattered signal to be observed in the far field. After calibration, this process yields the RCS of the test object in units of area, or the full scattering matrix as a set of complex scattering coefficients. This paper describes the planned upgrades to the old IEEE Std 1502™-2007 IEEE Recommended Practice for Radar Cross-Section Test Procedures [1]. The new standard will reflect the recent improvements in numerical tools, measurement technology and uncertainty estimates in the past decade.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.