Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
A.K. Bhattacharvya (Indian Institute of Technology),D.R. Sarcar (Indian Institute of Technology),
S. Sanyal (Indian Institute of Technology),
S.K. Tandon (Indian Institute of Technology), November 1982
A monostatic C.W. radar cross-section facility in the X-band at the Radar and Communication Centre, Indian Institute of Technology, Kharagpur, India is described. This set up is capable of automatically measuring the c.w. monostatic radar cross-section over the range of aspect angle 0 to ±180o for both TE and TM polarizations. The transmitting/receiving antenna and the rotating target is housed on the roof-top of the building and the microwave circuit with recording arrangement is in the air-conditioned laboratory. It is capable of handling a target of arbitrary shape of maximum size equal to 70 cm and uses a two-stage background (without target) cancellation technique employing Magic-T. A typical value of effective isolation between the transmitted and received signals is of the order of 70 dB and a dynamic range of 35 dB. Measurements made in this set up with different types of targets show a fair agreement with the results obtained by analytical investigations. The same set-up with necessary modifications for measuring the phase of the scattered field along with the amplitude data is expected to provide the amplitude and phase information for target identification and classification problems.
This paper summarizes the results of work performed for the Naval Air Development Center (NADC) on a new full-sized aircraft antenna range located in Warminster, PA. Because of the ever-increasing sophistication of aircraft systems, a facility capable of testing full scale mock-ups has become necessary to fully characterize the system in its operating environment. There are, however, several unique problems associated with such a range. Many systems of interest have a wing-tip to wing-tip baseline, which requires that the incident illumination be “uniform” over a significant aperture (approximately 40x15 feet for tactical aircraft). Differential path loss between wing-tip ends, as the aircraft is rotated, can be a source of large error, as can the parallax created by off-center rotation. Also, since today’s military aircraft carry a wide variety of systems, the range is required to be a “general use” range, operational over a wide frequency spectrum from 30 MHz to 40 GHz.
A thorough examination of design trade-offs was performed relating the critical parameters of source beamwidth, specular reflection, path loss, phase error, and receive aperture size in order to choose the proper source antenna type, source height, and separation distance between source and test antennas for each frequency band of interest. Other factors in the range design were a maximum possible source height of 40 feet (approximately the height of the pedestal), and a desire to keep the separation distance fixed over the entire frequency range.
Results are presented with indicate excellent performance over an 18 x 18 foot aperture for various polarizations. It was found that the range operates effectively as a ground reflection range from 30 MHz to 3 GHz, and as an elevated range at higher frequencies. Peak-to-peak amplitude ripples over the test aperture of 1.0 dB (corresponding to a reflection level of –25 dB) were acheived over a significant portion of the frequency spectrum.
S. Pal (ISRO Satellite Centre),V.K. Lakeshmeesha (ISRO Satellite Centre)
V. Mahedevan (ISRO Satellite Centre)
L. Nicholas (ISRO Satellite Centre)
R. Ashiya (ISRO Satellite Centre), November 1980
The paper describes a simple but unique antenna test facility suitable for aerospace antenna developments. The total idea can be easily adopted by organizations who wish to carry out antenna measurements with minimum required instrumentation. The facility majorly caters for omni and wide beam antenna measurements, has been set up at ISRO Satellite Centre, Bangalore, India. It has been extensively used for omnidirectional antenna developments in VHF, UHF, L, S, and X-bands for India’s various space programs. Radiation pattern, gain, polarization and impedance measurements can be carried out both in near free space conditions as well as the ground reflection modes. The main feature of the facility is the use of large fiber-glass mounting structures for avoiding reflections and perturbations in radiation patterns due to impressed surface currents, specially in VHF ranges. Field probing is done by the use of a fiber-glass X-Y probe positioner. The facility used Scientific Atlanta 1752 Receiver and 1540 Recorder. Suitable software has been added to the facility for contour plotting of radiation levels, calculation of efficiency isotropy, and polarization properties.
This paper describes a new, automated, microprocessor controlled, dual-channel microwave vector ratio measurement receiver for the frequency range 10 MHz to 18 GHz. It provides a greater than 120 dB dynamic range and resolutions of 0.001 dB and 0.1 degree. Primarily designed as an attenuator and Signal Generator Calibrator, it offers solutions to antenna measurement problems where high accuracies and/or wide dynamic measurement ranges are required such as for broadband cross-polarization measurements on radar tracking antennas, highly accurate gain measurements on low-loss reflector antennas, frequency domain characteristics measurements on wide-band antennas with resulting data suitable for on-line computer conversion to time domain transient response and dispersion characteristics data and wideband near field scanning measurements for computing far field performances. The measurement data in the instrument is obtained in digital form and available over an IEEE-488 bus interface to an outside computer. Measurement times are automatically optimized by the built-in microprocessor with respect to signal/noise ratio errors in response to the measurement signal level and the chosen resolution. Complete digital measurement data amplitude of both channels and phase, is updated every 5 milliseconds.
In recent years there has been an increasing requirement for more extensive and precise measurements of the polarization properties of antennas. Some of the more conventional polarization measurement techniques are no longer applicable because of the required measurement time or the achievable accuracy. This presentation is an overview of polarization measurement methods which may be employed on far-field antenna ranges. Instrumentation requirements and sources of error are also included.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.