AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Polarization

Broadband Dielectric Probe for Near Field Measurements
C-C Chen (ElectroScience Laboratory),P.A. Diez (ElectroScience Laboratory), W.D. Burnside (ElectroScience Laboratory), November 2001

A novel broadband dielectric rod probe design that has the characteristics of broad bandwidth; symmetric probe pattern; low RCS; low antenna clutter and dual polarization operation is discussed. The RCS level reduces the interaction between the probe and antenna under test (AUT). The lower antenna clutter level improves the sensitivity in detecting responses from wide angles with greater time delays. During the transmission mode, the rod is excited with a broadband microwave launcher from one end. The radiation then occurs at the other terminal of the rod. Measurement results of the far-field patterns, RCS and reflection coefficient for a prototype rod probe (DRP) are presented.

Experimental Studies With Comparisons to Computational Model for Automobile Antennas
Y. Kim (ElectroScience Laboratory),E.K. Walton (ElectroScience Laboratory), November 2001

A series of experimental and theoretical tests designed to develop techniques for reliable computational modeling of automobile antenna performance is presented. The results from the experimental measurements are compared with the results of computational techniques to verify their accuracy and reliability. The Electromagnetic Surface Patch (ESP5) code, a theoretical Method of Moment (MoM) general-purpose code developed at the Ohio State University, is used for computational modeling. We progress from the simple geometry of a single square plate and a monopole, to the more complex structure of a small copper-coated plastic model of an automobile. The computational simulation and measurements are configured with both a monopole antenna mounted at the center of the automobile roof and a backlite heater grid FM antenna. The input impedance, pattern, and polarization are all measured. Comparisons between the results of the computational simulations are presented, as well as the procedures used to measure the antenna characteristics and compare the experimental data with the measured data.

Advanced Compact Antenna Test Range Quiet Zone Characterization and Extension Techniques
B. Buralli (ALCATEL SPACE INDUSTRIES),C. Bouvin (ALCATEL SPACE INDUSTRIES), C. Nardini (ALCATEL SPACE INDUSTRIES), G. Forma (ALCATEL SPACE INDUSTRIES), H. Garcia (ALCATEL SPACE INDUSTRIES), M. Vacarella (ALCATEL SPACE INDUSTRIES), November 2001

Telecommunication satellites capacity growth has lead to a new generation of antennas , larger in size and with extremely sharp performance in terms of gain , cross polarization and coverage isolation (frequency re-use). In order to test such kind of antennas (the largest one is a Ku-band 3.6 m diameter and 6 m focal length reflector antenna) Alcatel Space Industries has implemented several innovations in its Compact Antenna Test Range (CATR): - a powerful and flexible machine has been invested , which provides 6 degrees of freedom (the machine has been called “6DOF Table”) in a wide range of motion to any satellite, allowing to bring any antenna of this satellite into the quiet zone - thanks to this new machine a series of accurate scanner probing has been performed , not only in the central plane of the quiet zone , but also on an eight meter range along the Angle Of Arrival (AOA) of the CATR - the quiet zone has been extended by one meter in height thanks to defocusing techniques; this extension has been modeled with GRASP 8 and tested using the vertical degree of freedom of the “6DOF Table” and a very accurate scanner. - In addition , the Cross polarization of the quiet zone has been tested with high dynamic ranges, using very high purity gridded horns . An average Cross polarization isolation better than 55 dB has been evidenced.

Accurate Gain Calibration With Corrugated Horns
L.G.T. Van de Coevering (March Microwave Systems B.V.),S.C. van Someren (March Microwave Systems B.V.), V.J. Vokurka (March Microwave Systems B.V.), November 2001

A method is presented for calculating the gain of corrugated conical horns. It is based on basic symmetry conditions of circular or conical waveguide mode fields. This formulation allows to derive the radiation pattern over a complete sphere form two principal polarization patterns (E- and H-plane patterns). This method can be applied for both theoretical or experimental patterns, respectively. The theory has been verified experimentally with measurements carried out on two different ranges. The results agreed within 0.05 dB or less in all situations.

Quasi-Optical Waveguide Modeling Method for Scattering Matrix Measurements in the Near Millimeter and Submillimeter Wave Regions
V.K. Kiseliov (National Academy of Sciences of Ukraine),P.K.. Nesterov (National Academy of Sciences of Ukraine), T.M. Kushta (National Academy of Sciences of Ukraine), November 2001

Earlier (AMTA'97, AMTA'98), we have proposed a new low-cost laboratory method named the quasi-optical waveguide modeling (QWM) method to study power and amplitude-phase scattering characteristics of objects, in particular the RCS of targets or their scale models, in the near millimeter (NMM) and submillimeter (SMM) wave regions. A specific feature of this technique in that an investigated object (or its scale model) is mounted inside a quasi-optical waveguide structure in the form of a hollow dielectric waveguide (HDW), in which the scattering characteristics of the waveguide dominant HE11 mode are determined. These characteristics are related to the wanted scattering characteristics of the test object in free space by definite relationships. At the same time the HDW serves several functions: it forms a quasiplane incident wave within the scattering area where test object is placed, performs the low-loss and low-distortion transmission of the scattered wave carrying information of the object being tested to the receiver, effectively filters the unwanted modes arising at the scattering on the test object, and insulates the measurement area from the ambient conditions containing parasitic sources. In this paper we consider the possibility of using the QWM method to study polarization backward scattering characteristics of physical objects, in particular the complex elements of the scattering matrix with relative phase (SMR). A quasi-optical polarimetric micro-compact range (PMCR) based on the circular HDW and quasi-optical devices has been developed and built. The measurement results of the SMR and backward scattering patterns of a reference object as a square metallic cylinder obtained in the PMCR for the different linear polarization basic sets at the 4-mm wave band are presented. The comparison between the experimental results for the reference object and the theoretical data calculated by the geometrical theory of diffraction have shown a good agreement, and demonstrated the possibilities of the QWM method, and its good perspectives for backward scattering polarization characteristics modeling in the NMM and SMM wave regions.

Application of the NIST 18 Term Error Model to Cylindrical Near-Field Antenna Measurements
A.C. Newell,D. Lee, November 2000

This paper describes error analysis and measurement techniques that have been developed specifically for cylindrical near-field measurements. A combination of analysis and computer simulation is used to show the comparison between planar and cylindrical probe correction. Error estimates are derived for both the pattern and probe polarization terms. The analysis is also extended to estimate the effect of position errors. The cylindrical measurement geometry is very useful for evaluating the effect of room scattering from very wide angles since scans can cover 360 degrees in azimuth. Using a broad beam AUT and scanning over a large y-range provides almost full spherical coverage. Comparison with planar measurements with similar accuracy is presented.

Dielectrically-Loaded Horns for Use as Antenna Measurement Range Illuminators
K.J. Greene,C. Granet, November 2000

The design of hybrid-mode dielectrically-loaded horns [1][2] for antenna test range illumination is described. These horns have a wide operating bandwidth of 5:1 or greater and were designed to replace conventional corrugated- or smooth-walled illumination horns that, typically, have a bandwidth of 2:1or less. Dielectrically-loaded horns have the radiation characteristics desirable for test range illumination: principal plane pattern symmetry, reasonably low cross-polarization and low sidelobes, low reflection coefficient and relatively constant beamwidth. At CSIRO we have developed software and manufacturing techniques to design and make these horns accurately. Measured results, that show close agreement with predicted values, are presented for a horn made for the frequency range, 7 to 40 GHz.

Raytheon 23' x 22' 50GHz Pulse System
T. Speicher,A. Puzella, J.K. Mulcahey, November 2000

Nearfield Systems, Inc. in Carson, California delivered a vertical 23' by 22' (7.0m x 6.7m) near-field test range to Raytheon Electronic Systems in Sudbury, Massachusetts. This planar and cylindrical measurement system is capable of characterizing antennas of various physical sizes in continuous wave or in pulse mode from 800MHz to 50GHz. The near-field measurements are computer controlled and capable of multiple frequency, multiple beam and multiple polarization in AUT transmit or receive modes. The precision robotic system uses a Data Acquisition Controller running NSI software to provide four-axes for probe positioning and three-axes for antenna positioning. The RF subsystem is based on the HP 8530A microwave receiver, HP 83630B RF source, HP 83621A LO source and HP 85309A LO/IF Distribution Unit. The test range was evaluated using the NIST 18- term error analysis on a 45GHz 54" diameter left-hand circular polarized reflector antenna.

Ground Bounce Reduction Using a Tapered Resistive Sheet Fence
Y. Kim,E.K. Walton, November 2000

One problem in a RCS ground bounce range is that the direct signal can be interfered with by the ground reflected signal. The undesired ground bounce signal will cause errors in the RCS measurement. This paper presents a study of ground bounce reduction using a tapered and stepped resistive sheet fence. In order to show that the proposed R-card fence technique can reduce the ground reflected signal significantly, both experimental and theoretical studies are performed. The resistance of the R-card varies based on a Kaiser-Bessel taper function. The experimentall results with and without the R-card fence show that the ground reflected signal can be attenuated by about 20dB. Both vertical and horizontal polarization cases are considered. This paper also the results of a simulation using NEC-BSC (Numerical Electromagnetic Code - Basic Scattering Code, developed at The Ohio State University ElectroScience Laboratory). Comparison of the results between measurements and simulations will be shown in this paper.

NFR Cross Polarized Pattern Errors Using a Linear Probe to Measure a Circularly Polarized Antenna
W.G. Scott,R.E. Wilson, November 2000

For greatest efficiency and accuracy in measuring patterns of a circularly polarized antenna on a planar near field range (NFR), a recommended procedure is to use a fast switched, dual circularly polarized probe. With such equipment one obtains complete pattern and polarization data from a single scan of the antenna aperture. For our task of measuring high gain shaped beam apertures, measurement efficiency is further improved by using a moderately high gain (about 12 dBi) probe that has been accurately calibrated for patterns, polarization, and gain over the test frequency band. Such a probe allows scan data point spacing to be typically at least one wavelength, thus keeping scan time minimized with acceptably small aliasing (data spacing) error. The measured near field amplitude and phase data is transformed via computer to produce the angular spectrum that is further processed to remove the effect of the probe patterns, i.e. probe correction. The final output is a set of (principal and cross) circular­ polarized far field patterns. However on one occasion, due to fast breaking changes in requirements, we were unable to obtain a calibrated circular polarized probe in the available time. For this test we used an available calibrated 12 dBi fast-switched dual linear-polarized probe with software capable of processing principal and cross circular-polarized far field patterns. As anticipated, we found from preliminary tests that the predicted low cross-polarized shaped beam pattern was not achieved when using the calibrated fast Ku band probe switch. Further tests showed the problem to be due to small errors in calibration of the probe switch. This paper will discuss test and analysis details of this problem and methods of solution.

1.56 THz Spot Scanning Radar Range for Fully Polarimetric W-Band Scale Model Measurements
G.B. A. DeMartinis,J. Waldman, M. Coulombe, T.M. Goyette, W. Nixon, November 2000

A radar transceiver operating at 1.56 THz has recently been developed to obtain coherent, fully polarimetric W-band (98 GHz) RCS images of 1:16 scale model targets. The associated optical system operates by a scanning a small focused beam of swept­ frequency radiation across a scale model to resolve individual scattering centers and obtain the scaled RCS values for the centers. Output from a tunable microwave source (10 - 17 GHz) is mixed with narrow band submillimeter-wave radiation in a Schottky diode mixer to produce the chirped transmit signal. Two high-frequency Schottky diode mixers are used for reception of the V-pol and H-pol receive states, with a fourth mixer providing a system phase reference. The full 2x2 polarization scattering matrix (PSM) for each resolved center is obtained following off-line data processing. Measurement examples of five simple calibration objects and a tank are presented.

How to Specify an RF System for Antenna Measurements
D.S. Fooshe,M. Schultz, November 2000

Antenna measurement systems have unique requirements, which must be properly evaluated and understood in order for the antenna engineer to be successful in specifying an RF system that meets his needs. Antennas are characterized by specific operating and performance parameters that will determine the requirements for a measurement system. Aperture size, frequency range, bandwidth, side-lobe nulls, beamwidth, and polarization characteristics are a few of the more important parameters. As with most engineering problems, system performance often requires a trade-off of equally important, but conflicting characteristics. Sensitivity and measurement time are well-known examples of this trade-off. Other examples include local vs remote mixers, receiver speed vs sensitivity, range size vs system dynamic range, and there are many others. The antenna engineer must be able to identify his most important system performance parameters in order to make compromises with confidence, since they are inevitably required. Once the system performance requirements have been determined, the antenna engineer can begin to select equipment, cables and components with the desired performance characteristics for his range. This paper will describe the process for analyzing requirements, performing system trade-offs and specifying equipment and components for several antenna measurement system types.

Small, Broadband, Dual-Polarized, Phased Array Aperture Implemented Using Flare Notch Elements, A
A. Torres,A. MacFarland, P. Beyerle, W. Mohuchy, November 2000

The purpose for this advanced development program was to design, fabricate and test a physically small, broadband, dual-polarized, phased array antenna aperture using Flare Notch elements. The array was designed to operate in the 4 to 18 GHz frequency spectrum, having a VSWR of less than 2:1 and capable of handling 10 watts per element. The array was configured with polarization diversity, essentially, dual cross elements are used which are excited in phase or out of phase depending on the application. One of the significant accomplishments of this research effort was the elimination of grating lobes and the reduction of the size of the elements. Another significant accomplishment is the feeding of dual flare notch elements with a broadband microstrip match network. The antenna elements were implemented using Rogers 4003 materials. Fabrication of the elements and assembly of the elements is being done in a configuration of two rows by twelve elements of which only eight elements are normally excited. The remaining elements are used as parasitics to support the desired radiation pattern. The research work is being done in support of the next generation of solid state broadband radiation systems presently under development for ECM applications.

Broadband Polarization Selectable Feed for Compact Range Applications, A
C.W. Sirles, November 2000

Many aircraft radome structures are designed to operate simultaneously over multiple RF bands and incident polarizations. Critical parameters must be measured over the electrical apertures of the radome and across each operating band. Automated measurement techniques are required to efficiently collect the large volume of test data required. A modular broadband feed assembly has been developed to allow the simultaneous collection of multi-band, multi-polarization data on a compact range without the need to mechanically change feeds. The feed assembly utilizes a sinuous antenna as the radiating element and is capable of operation from 2-18 GHz with electronically selectable polarization states. Feed design criteria as they relate to compact range antenna and radome measurements are discussed. Of primary importance are reflector illumination pattern, linear polarization cross-polarization level, and circular polarization axial ratio. Polarization switching requirements for a specific test application are defined and the physical implementation of the integrated feed assembly is described. Measured feed and quiet zone performance data is presented for this application. The polarization switching configuration can be readily modified to support other applications.

Experimental Issues in Ultra Near-Field Measurements
D. Smith,M. Morgan, M. Parent, S. Browning, S. Love, November 1999

In this paper we discuss the experimental issues encountered in the measurement of the local electromagnetic fields in the reactive region of a scattering or radiating body using the NRL Near-Field Facility. Our investigations require high-resolution measurements, reaching spatial resolutions of small fractions of wavelength, high polarization sensitivity, and broad bandwidth. We present techniques currently successfully being used in these investigations. The complexity of the reactive zone fields imposes difficult requirements on probe designs. Currently, the NRL probes include coaxial and coplanar configurations. We will discuss their properties and characterization. Design trade-offs to reach spatial resolutions of one-tenth of a wavelength, bandwidths of several giga-hertz and limitations on polarization sensitivity will be addressed. We will correlate these observations with the results of the back-propagation algorithms being developed at the Naval Postgraduate School.

Satellite Payload Parameter Measurements in a Compensated Compact Antenna Test Range
J. Habersack,H. Kress, H-J. Steiner, W. Lindemer, November 1999

Modern Satellite Antennas and Payloads are characterized by a lot of physical parameters like e.g. Radiation Pattern, Gain, EIRP, Flux Density, Gff and PIM, whereas the available time frame for measurements is getting shorter and shorter. The DSS Compensated Compact Range (CCR) allows a time efficient measurement of all payload parameters with high accuracy under controlled environmental conditions. The CCR consists of two doubly curved reflectors, which prevent inherent cross-polarization and create a very high constant amplitude and phase distribution in the quiet zone with a very good scanning performance. Most of the payload parameters can be measured directly or have to be calculated from a set of measurement values. For the G/T measurement of active antennas a new method for the noise power measurement was established. This paper describes the principle test set-ups with the corresponding measurement techniques to improve the measurement accuracy. Error budgets will be presented for pattern and gain measurement.

Performance Evaluation of the Automated Field Probe System (AFPS)
M.C. Brinkmann,G.R. Whitley, T.L. Lane, November 1999

The Georgia Tech Research Institute (GTRI) under contract to the U.S. Air Force 46 Test Group, National Radar Cross Section Test Facility (NRTF) at Holloman AFB, NM, has designed and developed an Automated Field Probe System (AFPS). The AFPS operates as a one-way probe for evaluation of the electromagnetic field at the test zone and provides a mobile capability to rapidly, smoothly, and accurately probe the field at the various test-areas. The AFPS provides the ability to probe over an area as large as 40-ft x 40-ft all under computer control from the radar(s) while sweeping over 1-18 GHz and 34-36 GHz for both H and V polarization. The RF, phase reference, and control signals from the radar are transmitted to the AFPS over a microwave fiber optic link. This paper will describe the design and performance of the AFPS. Quick-look data products will be included in the presentation.

Design and Testing Techniques for Automotive Conformal Diversity Antennas
W. Villarroel,E.K. Walton, November 1999

The automobile antenna industry is facing two rapidly growing trends: (1) the incorporation of effective, low cost, AM/FM conformal antenna designs and (2) the antenna capability to handle diversity FM radio receivers. The development of techniques for testing automotive conformal diversity antennas' performance becomes necessary to evaluate and compare them. Testing techniques to obtain the antenna Input Impedance (Zin), Standing Wave Ratio (SWR) and Mismatch Loss (MML) as well as the azimuth gain patterns and the combined diversity signal (maximum of the diversity signals) are described. Experimental results for the Annular Slot Windshield Diversity Antenna using polarization diversity are shown. It is demonstrated that the Annular Slot Windshield Diversity Antenna can be used effectively to reduce multipath fading.

Evaluation of Scattering Level of TT&C Antennas with Geometrical Scale Modeling Technique
J.Y. Lee, November 1999

Omnidirectional antennas are typically used as Tracking, Telemetry and Command (TT&C) antennas for satellites. However, the omnidirectional patterns of TT&C antennas located on satellite structures are susceptible to substantial scattering and polarization mismatch loss, especially at the initial mission stage. Consequently, it is very important to properly evaluate the extent of these effects for each of the initial mission configurations. In this paper, measurement techniques to achieve proper evaluation of scattering level and polarization mismatch loss for TT&C antennas of NASA's Tracking and Data Relay Satellite (TDRS) are presented. The paper encompasses a test approach, a test procedure and test results. Application of these test techniques is essential to the TDRS TT&C antenna qualification program.

Low Cross-Polarized Compact Range Feeds
J.A. Fordham,J.H. Cook, November 1999

Compact antenna test ranges intended for low cross­ polarization antenna measurements require the use of feeds with polarization ratios typically greater than 40 dB across the included angle of the quiet zone as well as across the frequency band of interest. The design for a series of circular corrugated aperture feeds to meet these requirements is presented. The feeds are based on a circular waveguide OMT covering a full waveguide frequency band with interchangeable corrugated apertures to cover three sub-bands. In order to validate the design of this series of scalar feeds, high accuracy cross-polarization data was collected. The primary limiting factor in the measurement of the polarization ratio was the finite polarization ratio of the source antennas. A technique for correcting for the polarization ratio of the source is presented along with measured data on the feeds. The technique begins with the accurate characterization of the linear polarization ratio of the standard gain horns using a three antenna technique, followed by pattern measurements of the feeds, and ends with the removal of the polarization error due to the source antenna from the measured data. Measured data on these feeds is presented before and after data correction along with data predicted using the CHAMP® moment method software.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31