AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Pattern

Truncation Error Mitigation in Free-Space Automotive Partial Spherical Near Field Measurements
Francesco Saccardi, Francesca Rossi, Lucia Scialacqua, Lars Foged, October 2017

Modern cars are equipped with a large number of antennas which are strongly integrated with the car. A full characterization of the radiating properties of the entire vehicle is thus typically required. In order to characterize the radiating properties of the installed antennas, large measurement systems accommodating the full vehicle are required. As in standard antenna measurements, a full spherical near field (NF) scanning around the car is desirable in order to perform an accurate NF/FF transformation. However, due to size and weight of the Device Under Test (DUT) and/or economic factors a full spherical scan is often unfeasible. For this reason, truncated spherical scanners (such as hemispherical) are typically involved. A classic solution is to combine hemispherical scanning with a metallic ground plane which is assumed to be a Perfect Electric Conductor (PEC) in the NF/FF transformation. However, the PEC ground-plane is less representative of realistic automotive environments such as asphalt that is strongly dielectric. A further drawback is the strong scattering from the large metallic ground-plane which highly compromises the NF measurements at low frequencies. In many situations, it is thus desirable to perform the NF measurements in a condition similar to free-space by using absorber materials on the floor. It is well-known that standard NF/FF transformations applied to partial spherical acquisitions generates the so called truncation errors. Such errors are stronger at lower frequencies due to the lower number of spherical modes for fixed DUT size. Moreover, typical antennas for automotive applications are generally low directive thus, the impact of the truncation on the measured pattern is often non-negligible. In such cases advanced post-processing techniques must be involved to mitigate the effect of the truncation errors. In this paper two truncation error mitigation techniques will be compared when applied to automotive measurements performed in free-space conditions. The first technique is an iterative process which at each iteration applies a modal filtering based on the size of the DUT. The second technique is based on the computation of the equivalent currents of the DUT over an equivalent surface which acts as spatial filter. Both techniques give excellent mitigation performance with different computational effort. The good agreement between two different techniques effectively defining the lower bound for what can be successfully mitigated by post processing techniques.

Nonredundant NF-FF Transformation with Spherical Spiral Scan for a Non-Centered Quasi-Planar Antenna Under Test
Francesco D'Agostino, Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi, October 2017

Among the near-field - far-field (NF-FF) transformations, that with spherical scan [1] is the most appealing due to its feature to allow the whole radiation pattern reconstruction of the antenna under test (AUT). To get a considerable measurement time saving, spherical NF-FF transformations for AUTs with one or two predominant dimensions, requiring a minimum number of NF data, have been developed in [2], by using the nonredundant sampling representations of the electromagnetic (EM) fields [3] and adopting a prolate or oblate ellipsoid to shape the AUT. Another effective possibility to save the measurement time is to make faster the scan by collecting the NF data through continuous and synchronized movements of the probe and AUT. To this end, NF-FF transformations with spherical spiral scan have been recently proposed. They rely on the nonredundant representations and use optimal sampling interpolation (OSI) formulae [3] to effectively recover the NF data needed by the traditional spherical NF-FF transformation [1] from the acquired ones. The nonredundant sampling representation on the sphere from spiral samples and the related OSI expansion have been developed in [4-6] by adopting a spherical AUT model and choosing the spiral pitch equal to the sample spacing needed to interpolate along a meridian. Then, NF-FF transformations with spherical spiral scan for long or quasi-planar AUTs [7] have been obtained by applying the unified theory of spiral scans for non-volumetric AUTs [8]. Unfortunately, due to practical constraints, it is not always possible to mount the AUT in such a way that it is centered on the scanning sphere centre. In this case, the number of NF data required by the NF-FF transformation [1] and the related measurement time can remarkably increase, due to the corresponding grow of the minimum sphere radius. Aim of this work is the development of a fast and accurate nonredundant NF-FF transformation with spherical spiral scan suitable for quasi-planar antennas, which requires practically the same number of NF data both in the centered and offset mountings of the AUT. To this end, an offset mounted quasi-planar AUT is modeled as contained in a oblate ellipsoid, and an effective representation of the probe voltage over the scanning sphere, using a minimum number of samples collected on a proper spiral wrapping it, is developed by applying the unified theory of spiral scans for non-volumetric AUTs [8] in the spherical coordinate system having the origin coincident with the AUT centre at distance from the scanning sphere one. The related OSI expansion allows to accurately reconstruct the NF data required for the NF-FF transformation. [1] J. Hald, J.E. Hansen, F. Jensen, F.H. Larsen, Spherical near-field antenna measurements, J.E. Hansen, (ed.), London, Peter Peregrinus, 1998. [2] O.M. Bucci, C. Gennarelli, G. Riccio, C. Savarese, “Data reduction in the NF–FF transformation technique with spherical scanning,” Jour. Electr. Waves Appl., vol. 15, pp. 755-775, June 2001. [3] O.M. Bucci, C. Gennarelli, C. Savarese, “Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples,” IEEE Trans. Antennas Prop., vol. 46, pp. 351-359, March 1998. [4] O.M. Bucci, F. D’Agostino, C. Gennarelli, G. Riccio, C. Savarese, “NF–FF transformation with spherical spiral scanning,” IEEE Antennas Wireless Prop. Lett., vol. 2, pp. 263-266, 2003. [5] J F. D’Agostino, F. Ferrara, J.A. Fordham, C. Gennarelli, R. Guerriero, M. Migliozzi, “An experimental validation of the near-field - far-field transformation with spherical spiral scan,” IEEE Antennas Prop. Magaz., vol. 55, pp. 228-235, Aug. 2013. [6] F. D’Agostino, C. Gennarelli, G. Riccio, C. Savarese, “Theoretical foundations of near-field–far-field transformations with spiral scannings,” Prog. in Electr. Res., vol. 61, pp. 193-214, 2006. [7] R. Cicchetti, F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, M. Migliozzi, “Near-field to far-field transformation techniques with spiral scannings: a comprehensive review,” Int. Jour. Antennas Prop., vol. 2014, ID 143084, 11 pages, 2014. [8] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, M. Migliozzi, “The unified theory of near–field–far–field transformations with spiral scannings for nonspherical antennas,” Prog. in Electr. Res. B, vol. 14, pp. 449-477, 2009.

Ka-Band Measurement Results of the Irregular Near-Field Scanning System PAMS
Alexander Geise, Torsten Fritzel, Maurice Paquay, October 2017

The portable antenna measurement system PAMS was developed for arbitrary and irregular near-field scanning. The system utilizes a crane for positioning of the near-field probe. Inherent positioning inaccuracies of the crane mechanics are handled with precise knowledge of the probe location and a new transformation algorithm. The probe position and orientation is tracked by a laser while the near-field is being sampled. Far-field patterns are obtained by applying modern multi-level fast multipole techniques. The measurement process includes full probe pattern correction of both polarizations and takes into account channel imbalances. Because the system is designed for measuring large antennas the RF setup utilizes fiber optic links for all signals from the ground instrumentation up to the gondola, at which the probe is mounted. This paper presents results of the Ka-band test campaign in the scope of an ESA/ESTEC project. First, the new versatile approach of characterizing antennas in the near-field without precise positioning mechanics is briefly summarized. The setup inside the anechoic chamber at Airbus Ottobrunn, Germany is shown. Test object was a linearly polarized parabolic antenna with 33dBi gain at 33GHz. The near-fields were scanned on a plane with irregular variations of over a wavelength in wave propagation. Allowing these phase variations in combination with a non-equidistant grid gives more degree of freedom in scanning with less demanding mechanics at the cost of more complex data processing. The setup and the way of on-the-fly scanning are explained with respect to the crane speed and the receiver measurement time. Far-fields contours are compared to compact range measurements for both polarizations to verify the test results. The methodology of gain determination is also described under the uncommon near-field constraint of coarse positioning accuracy. Finally, the error level assessment is outlined on the basis of the classic 18-term near-field budgets. The assessment differs in the way the impact of the field transformation on the far-field pattern is evaluated. Evaluation is done by testing the sensitivity of the transformation with a combination of measured and synthetic data.

Verification of Spherical Mathematical Absorber Reflection Suppression in a Combination Spherical Near-Field And Compact Antenna Test Range
Stuart Gregson, Clive Parini, Allen Newell, October 2017

This paper presents the results of a recent study concerning the computational electromagnetic simulation of a spherical near-field (SNF) antenna test system. The new plane-wave scattering matrix approach [1, 2] allows many of the commonly encountered components within the range uncertainty budget, including range reflections, to be included within the model [3]. This paper presents the results of simulations that verify the utility of the spherical mathematical absorber reflection suppression (S-MARS) technique [3, 4] for the identification and subsequent extraction of artifacts resulting from range reflections. Although past verifications have been obtained using experimental techniques this paper, for the first time, corroborates these findings using purely computational methods. The use of MARS is particularly relevant in applications that inherently include scatterers within the test environment. Such cases include instances where a SNF test system is installed within an existing compact antenna test range (CATR) as is the configuration at the recently upgraded Queen Mary University of London (QMUL) Antenna Laboratory [5, 6]. Thus, this study focuses on this installation with results of CEM simulations and actual range measurements being presented. The method enables a quantitative measure of the levels of suppression offered by the MARS system. References A.C. Newell, S.F. Gregson, “Estimating the Effect of Higher Order Modes in Spherical Near-Field Probe Correction”, Antenna Measurement Techniques Association (AMTA) 34th Annual Meeting & Symposium, Bellevue, Washington October, 2012. A.C. Newell, S.F. Gregson, “Computational Electromagnetic Modelling Of Spherical Near-Field Antenna Test Systems Using Plane Wave Spectrum Scatting Matrix Approach”, Antenna Measurement Techniques Association (AMTA) 36th Annual Meeting & Symposium, Tucson, Arizona, October, 2014. C.G. Parini, S.F. Gregson, J. McCormick, D. Janse van Rensburg “Theory and Practice of Modern Antenna Range Measurements”, IET Press, 2014, ISBN 978-1-84919-560-7. G.E. Hindman, A.C. Newell, “Reflection Suppression in a large spherical near-field range”, Antenna Measurement Techniques Association (AMTA) 27th Annual Meeting & Symposium, Newport, RI, October. 2005. A.D. Olver, C.G. Parini, “Millimetre-wave Compact Antenna Test Range”, JINA Nice, November 1992. C.G. Parini, R. Dubrovka, S.F. Gregson, "CATR Quiet Zone Modelling and the Prediction of 'Measured' Radiation Pattern Errors: Comparison using a Variety of Electromagnetic Simulation Methods" Antenna Measurement Techniques Association (AMTA) 37th Annual Meeting & Symposium, Long Beach California, October 2015.

Serial-Robotic-Arm-Joint Characterization Measurements for Antenna Metrology
Michael Allman, David Novotny, Scott Sandwith, Alexandra Curtin, Josh Gordon, October 2017

The accurate alignment of antennas and field probes is a critical aspect of modern antenna metrology systems, particularly in the millimeter-wave region of the spectrum.Commercial off-the-shelf robotic arms provide a sufficient level of positional accuracy for many industrial applications.The Antenna Metrology Project in the Communications Technology Laboratory at the National Institute of Standards and Technology has shown that path-corrected commercial robotic arms, both in hardware and software analysis, can be used to achieve sufficient positioning and alignment accuracies (positioning error ~ /50) for antenna characterization measurements such as gain extrapolation and near-field pattern out to 183 GHz [1]. Position correction is achieved using a laser tracker with a 6 degree of freedom sensor attached to the robot end effector.The end effector’s actual position, measured using the laser tracker, is compared to its commanded position and a path correction is iteratively applied to the robot until the desired level of accuracy is achieved in the frequency range of interest.At lower frequency ranges (< 40 GHz), sufficient positional accuracy can be achieved, without path correction, using a using a calibrated kinematic model of the robot alone [2].This kinematic model is based on knowledge of the link frame transformations between adjacent links and captures deviations due to gravitational loading on the joints and small mechanical offsets between the joints.Additionally, the calibration procedure locates the robot’s base frame in the coordinate system of the robot’s end effector.Each link frame is described by four physical quantities, known as Denavit-Hartenberg (DH) parameters [3]. We performed calibration measurements of our CROMMA system’s DH parameters over a working volume of ~1 m3.We then use the laser tracker to compare the robot’s positional accuracy over this working volume with and without the calibrated kinematic model applied.The path errors for the calibrated case set an upper frequency limit for uncorrected antenna characterization measurements. [1]D. R. Novotny, J.A. Gordon, J.R. Guerrieri, “Antenna Alignment and Positional Validation of a mm Wave Antenna System Using 6D Coordinate Metrology, ” Proceedings of the Antenna Measurements Techniques Association, pp 247-252, 2014 [2]R.Swanson, G. Balandran, S. Sandwith, “50-micron Hole Position Drilling Using Laser Tracker Controlled Robots, ” Journal of the CMSC, Vol 9, No 1, Spring 2014 [3].J.J. Craig, “Introduction to Robotics: Mechanics and Control, 3rd ed.,” New Jersey, Prentice Hall, 2004, pp. 62-69

Filtering Antenna-to-Antenna Reflections in Antenna Extrapolation Measurements
Robert Horansky, Mohit Mujumdar, Dylan Williams, Kate Remley, Joshua Gordon, David Novotny, Michael Francis, October 2017

At NIST, we have developed a precision, wide-band, mmWave modulated-signal source with traceability to primary standards. We are now extending the traceability path for this modulated-signal source into free space to be used for verifying over-the-air measurements in 5G, wireless receivers. However, to obtain a traceable modulated signal in free space, the full scattering matrix of the radiating antenna must be measured. We have extended the extrapolation methods used at NIST, based on the work of Newell, et al. [1]. The extrapolation measurement provides a very accurate, far-field, on-axis, scattering matrix between two antennas. When combined with scattering-matrix measurements made with permutations of pairs of three antennas, far-field scattering, and, thus, gain, is obtained for each antenna. This allows an accurate extrapolation of the antenna’s near-field pattern. We have incorporated the extrapolation fitting algorithms into a Monte Carlo uncertainty engine called the NIST Microwave Uncertainty Framework (MUF) [2]. The MUF provides a framework to cascade scattering matrices from various elements, while propagating uncertainties and maintaining any associated correlations. By incorporating the extrapolation measurements, and the three-antenna method into the MUF, we may provide traceability of all measurement associated with the gain, including the scattering parameters. In this process, we studied several aspects of the gain determination. In this work, we show simulations determining the efficacy of filtering to reduce the effect of multiple reflection on the extrapolation fits. We also show comparisons of using only amplitude (as is traditionally done) to using the full complex data to determine gain. Finally, we compare uncertainties associated with choices in the number of expansion terms, systematic alignment errors, uncertainties in vector network analyzer calibrations and measurements, and phase error introduced by cable movement. With these error mechanisms and their respective correlations, we illustrate the NIST MUF analysis of the antenna scattering-matrix with data at 118 GHz. [1] A. C. Newell, R. C. Baird, and P. Wacker “Accurate Measurement of Antenna Gain and Polarization at reduced distances by an extrapolation technique” IEEE Transactions on Antennas and Propagation. Vol. 21, No 4, July 1973 pp. 418-431. [2] D. F. Williams, NIST Microwave Uncertainty Framework, Beta Version. NIST, Boulder, CO, USA, Jun. 2014. [Online]. Available: http://www.nist.gov/pml/electromagnetics/related-software.cfm

Measurements of Low Gain VHF Antennas in Spherical Multi-Probe NF Systems
Andrea Giacomini, Francesco Saccardi, Vincenzo Schirosi, Francesca Rossi, Stephane Dooghe, Arnaud Gandois, Lars Foged, October 2017

Measurement of the radiation properties of low gain antenna operating at VHF frequencies is well known to be a challenging task. Such antennas are sometimes tested in outdoor Far Field (FF) ranges which are unfortunately subject to errors caused by the electromagnetic pollution and scattering from the environment. Near Field (NF) measurements performed in shielded anechoic chambers are thus preferable to outdoor ranges. However, also in such cases, the accuracy of the results may be compromised by the poor reflectivity of the absorbing material which might be not large enough wrt the VHF wavelength. Other source of errors may be caused by the truncation of the scanning area which generates ripple on the FF pattern after NF/FF transformation. Spherical multi-probe systems developed by MVG are optimal measurement solution for low directive Device Under Test (DUT). Such systems allow to perform a quasi-full spherical acquisition combining a rotation of the DUT along azimuth, with a fast electronically scanned multi-probe vertical arch. The DUT can be accommodated on masts made of polyester material which allows to minimize the interaction with the DUT. Measurements of low directive device above 400 MHz performed with such type of systems have been demonstrated to be accurate and extremely fast in previous publications. In this paper, measurements of a low directivity antenna, performed at VHF frequencies in a MVG spherical multi-probe system, will be presented. The antenna in this study is an array element, part of a larger array, which has been developed for space-born AIS applications. Gain and pattern accuracy of the measurement will be demonstrated by comparison with full wave simulation of the tested antenna.

Measurement of Antenna System Noise Temperature Using Planar Near-Field Data
Allen Newell, Patrick Pelland, Stuart Gregson, Daniël Janse van Rensburg, October 2017

This paper presents the results of a new measurement technique to determine antenna system noise temperature using data acquired from a planar near-field measurement. The ratio of antenna gain to system noise temperature (G/T) is usually determined in a single measurement when the antenna is alternately pointed towards the “cold sky” and a hot radio source such as the sun or a star with a known flux density. The antenna gain is routinely determined from near-field measurements and with the development of this new technique, the system noise temperature can also be determined. The ratio of G/T can therefore be determined from planar near-field data without moving the antenna to an outdoor range. The noise temperature is obtained by using the plane-wave spectrum of the planar near-field data and focusing on the portion of the spectrum in the evanescent or “imaginary space” portion of the spectrum. Near-field data is obtained using a data point spacing of l/4 or smaller and the plane-wave spectrum is calculated without applying any probe correction or Cos(q) factor. The spectrum is calculated over real space corresponding to propagating modes of the far-field pattern and also the evanescent or imaginary space region where . Actual evanescent modes are highly attenuated in the latter region and therefore the spectrum in this region must be produced by “errors” in the measured data. Some error sources such as multiple reflections will produce distinct localized lobes in the evanescent region and these are recognized and correctly identified by using a data point spacing of less than l/2 to avoid aliasing errors in the far-field pattern. It has been observed that the plane wave spectrum beyond these localized lobes becomes random with a uniform average power. This region of the spectrum must be produced by random noise in the near-field data that is produced by all sources of thermal noise in the electronics and radiated noise sources received by the antenna. By analysing and calibrating this portion of the spectrum in the evanescent region the near-field noise power can be deduced and the corresponding noise temperature determined. Simulated and measured data will be presented to illustrate and validate the measurement and analysis techniques. Keywords — Planar Near-Field, G/T, Figure-of-Merit Measurements, Simulation, Plane Wave Spectrum.

Acquisition, Reconstruction, and Transformation of a Spiral Near-Field Scan
Brett Walkenhorst, Scott McBride, October 2017

The topic of non-redundant near-field sampling has received much attention in recent literature. However, a practical implementation has so far been elusive. This paper describes a first step toward such a practical implementation, where the practicality and generality are maximized at the expense of more acquired data points. Building on the theoretical work of faculty at the University of Salerno and University of Naples, the authors have acquired a set of near-field data using a spiral locus of sample points and, from those data, obtained the far-field patterns. In this paper, we discuss the acquisition system, the calculation and practical implementation of the spiral, the phase transformations, interpolations, and far-field transforms. We also present the resultant far-field patterns and compare them to patterns of the same antenna using conventional near-field scanning. Qualitative results involving aperture back-projection are also given. We summarize our findings with a discussion of error, uncertainty, acquisition time, and processing time in this simplified approach to non-redundant sampling in a practical system.

Channel De-embedding and Measurement System Characterization for MIMO at 75 GHz
Alexandra Curtin, David Novotny, Alex Yuffa, Selena Leitner, October 2017

As modern antenna array systems for MIMO and 5G applications are deployed, there is increased demand for measurement techniques for timely calibration, at both research and commercial sites.[1] The desired measurement method must allow for the de-embedding of information about the closed digital signal chain and element alignment, and must be performed in the near-field. Current means of measuring large arrays cover a variety of methods. Single-element gain and pattern calibration must cover the parameter space of element weightings and is extremely time-consuming, to the point where the measurement may take longer than the duration over which the array response is stable.[4] Two other popular methods are the transmission of orthogonal codes and the use of holography to reconstruct a full-array pattern. The first of these methods again requires extremely long measurement time. For an array of N elements and weightings per element W_n, the matrix of orthogonal codes must be of an order greater than NW_n.[4][3]. This number varies with the form of W_n depending on whether the array is analog or digital, but in both cases for every desired beam configuration, an order-N encoding matrix must be used. The second method relies on illuminating subsets of elements within an array and reconstructing the full pattern.[2] Each illuminated subset, however, neglects some amount of coupling information inherent to the complete system, making this an imperfect method. In this work we explore the development of a sparse set of measurements for array calibration, relying on coherent multi-channel data acquisition of wideband signals at 75 GHz, and the hardware characterization and post-processing necessary to perform channel de-embedding at an elemental level for a 4x1 system. By characterizing the complete RF chain of our array and the differential skew and phase response of our measurement hardware, we identify crucial quantities for measuring closed commercial systems. Additionally, by combining these responses with precise elemental location information, we consider means of de-embedding elemental response and coupling effects that may be compared to conventional single-element calibration information and full-pattern array measurements. [1] C. Fulton, M. Yeary, D. Thompson, L. Lake, and A. Mitchell. Digital phased arrays Challenges and opportunities. Proceedings of the IEEE, 104(3):487–503, 2016. [2] E. N. Grossman, A. Luukanen, and A. J. Miller. Holographic microantenna array metrology. Proceedings of SPIE, Passive Millimeter-Wave Imaging Technology VIII, 5789(44), 2005. [3] E. Lier and M. Zemlyansky. Phased array calibration and characterization based on orthogonal coding Theory and experimental validation. 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY), pages 271–278, 2010. [4] S. D. Silverstein. Application of orthogonal codes to the calibration of active phased array antennas for communication satellites. IEEE Transactions on Signal Processing, 45(1):206–218, 1997.

Parametric Modeling of Antenna Radiation Patterns in Both Spatial and Frequency Domains
Zubiao Xiong, October 2017

A complete characterization of the radiation and scattering phenomena is essential to the ray tracing simulators. In the ray tracing modeling, the electromagnetic field quantities are traced along the ray paths and determined by the antenna radiation pattern and the scattering patterns of the obstacles. The polarimetric patterns may be prepared in advance from the measurements or numerical simulations, and reused by the ray tracing simulators for various situations. However, the prefabricated pattern data set usually contain only a limited quantity of samples at discrete angular directions and frequencies. The lack of full representations of the desired patterns hinders the accurate calculation of ray field quantities. Although interpolation can be done using multidimensional splines or polynomials, the accuracy is not assured by the problems’ physics. Especially, it is difficult to tackle the phase wrapping problem in the multidimensional case, which might lead to wrong phase interpolation. In this paper, model based parameter estimation (MBPE) is used to circumvent the requirement of obtaining all samples of the desired radiation and scattering patterns in both spatial (angular) and frequency domains. Since any function defined on the surface of a sphere can be represented by a sum of spherical harmonic functions, we utilize the spherical harmonic expansion in the spatial domain firstly. Specifically, in order to avoid the singularities of conventional vector spherical harmonics at the north and south poles, scalar spherical harmonics is used instead. The expansion coefficients are vector-valued frequency domain responses, independent to the angular variables. Then each coefficient is expanded by using the singularity expansion method, which leads to a rational function characterized by its poles and residues in the frequency domain. Since the poles are the characteristic of the considered object (antenna or scatter), it is reasonable to assume that all spherical harmonic components have the same poles. Therefore, the parameters to be estimated are the frequency domain poles and the corresponding residues for each spherical harmonic component. By following this method, a physically-based, closed-form, reduced-order parametric model can be established from the sampled pattern data. The proposed method will be validated by simulations and measurements.

A Novel and Innovative Near Field System for Testing Radomes of Commercial Aircrafts
Marc Le Goff, Nicolas Adnet, Nicolas Gross, Luc Duchesne, Arnaud Gandois, Ludovic Durand, October 2017

The maintenance of aircraft radomes is of particular importance for the commercial aviation industry due to the necessity to ensure the correct functioning of the radar antenna, housed within such protective enclosures. Given that the radar component provides weather assessment, as well as guidance and navigation functions (turbulence avoidance, efficiency of route planning in case of storms, etc.), it is imperative that every repaired radome be tested with accuracy and reliability to ensure that the enclosed weather radar continues to operate in accordance with the after-repair test requirements of the RTCA/DO-213. Recently, this quality standard was updated and published under the name RTCA/DO-213A, establishing more stringent measurement requirements and incorporating the possibility of measuring radomes using Near-Field systems. Consequently, a compliant multi-probe Near- Field system concept – AeroLab – has been specifically designed to measure commercial aircraft nose-radomes, in order to meet the new standard requirements. AeroLab performs Near-Field measurements. Near-Field to Far-Field transformations are then applied to the results. Such a Near-Field system allows the test range to be more compact than traditional Far-field test ranges, and thus be independent from the updated Far-Field distance which has progressed from D²/2l to 2D²/l in the new standard RTCA/DO-213A. AeroLab enables the evaluation of the transmission efficiency and beamwidth. It also allows for accurate evaluations of the side-lobe levels by providing improved visualization of principal cut views selected from 3D patterns. Moreover, depending upon the weather radar system inside the radome under test, 2 distinct scan sequences must now be taken into account: “elevation over azimuth” and “azimuth over elevation”. AeroLab emulates both of these motion sequences through a monolithic gimbal. Furthermore, thanks to its multi-probe array, such measurements are performed in a fraction of the time spent in current mono-probe test facilities (less than 4 hours, i.e. 1/3 less time than single probe scanners). Keywords: RTCA/DO-213A, radome measurement system, after-repair tests, multi-probe measurement system, Near-Field system.

Characterization of a Photonics E-Field Sensor as a Near-Field Probe
Brett Walkenhorst, Vince Rodriguez, James Toney, October 2017

In this paper, we explore the possibility of using a photonics-based E-field sensor as a near-field probe. Relative to open-ended waveguide (OEWG) probes, a photonics probe could offer substantially larger bandwidths. In addition, since it outputs an optical signal, a photonics probe can offer signal transport through optical fiber with much lower loss than what can be achieved using RF cables. We begin with a discussion of the theory of the device followed by a summary of results of a photonics sensor that was tested in a spherical near-field (SNF) range. In these tests, data were collected with the photonics probe in the test antenna position to characterize various probe parameters including polarization discrimination, probe gain, effective dynamic range, and probe patterns. In the same set of tests, the photonics device was placed in the probe position in the range and used to measure patterns of two different antennas: a standard gain horn and a slotted waveguide array antenna. The resultant patterns are shown and compared to patterns collected with traditional RF probes. We conclude the paper with a discussion of some of the advantages and disadvantages of using a photonics probe in a practical system based on the lessons learned in the SNF testing.

International Facility Comparison Campaign at L/C Band Frequencies
Maria Saporetti, Lars Foged, Yasar Kurdi, Antonis Alexandridis, Cosme López, Fernando Las-Heras, Manuel Castañer, October 2017

Comparison activities in which a number of measurement facilities compare their measurements of the same antenna in a standard configuration have become important for documentation and validation of laboratory expertise and competence. It is also mandatory to have regular participation in such activities to obtain and maintain accreditations like ISO 17025. The main goal of the facility comparison activities is to provide a formal opportunity for the participants to validate and document their achieved measurement accuracy and procedures by comparison with other facilities. Since 2004, comparison campaigns with different scopes have been conducted on antenna measurements within various European activities: EurAAP (European Association on Antennas and Propagation) supported by the European Cooperation in Science and Technology (COST) in the programs ASSIST IC0603 and VISTA IC1102 and the 6th EU framework network “Antenna Centre of Excellence” (ACE). Results of these activities have led to improvement in antenna measurement procedures and protocols in facilities and contributions to standards. Due to the direct benefits to the participants, the activities have been very successful and partial results have been published in IEEE referenced papers during the years. The large amount of measured data available have fostered fruitful discussion and research on the improvement of standard procedures, protocols and tools for performance verification like the facility comparison campaigns. As a further benefit, the campaigns have initiated a dialogue among different laboratories throughout Europe and USA and is spreading into Asia. In this paper we report on a recent EurAAP facility comparison campaign involving a medium gain ridge horn, MVI-SH800. The campaign covers measurement in the L and C band frequencies in different facilities in Europe and USA. The horn is equipped with an absorber plate to enhance the correlation in different facilities by reducing the sensibility to the measurement set-up. The results of 8 facilities will be shown in terms of gain and directivity patterns, equivalent noise level and the declared uncertainty will be checked against the whole set of measurements.

Multi-Band Compact MIMO Antenna System for LTE and WLAN Communications
Jiukun Che, Chi-Chih Chen, October 2017

In this paper, a novel compact 2-channel MIMO antenna design for all cellular and Wi-Fi communication needs from vehicular is discussed. The entire antenna system fits within the 13cm (diameter) by 9cm (height) volume. It consists of 2 vertical multi-band cellular antenna elements and two vertical multi-band Wi-Fi antenna elements. All four antennas share a 13cm diameter circular ground plane. Each antenna element design is a PCB based slot-loaded multi-band monopole. This particular element design as well as their mounting positions were chosen to minimize mutual coupling and blockage in order to maximize MIMO performance, i.e. diversity gain. In addition, the center region of the antenna volume also accommodates a raised L1-band GPS antenna. A prototype antenna was subsequently fabricated. The measured antenna performance compared well with simulated results before and after being mounted on a 4 feet diameter ground plane. The effect of the radome was also assessed and was found to be insignificant. The cellular antenna produced realized gain of over 2 dBi in lower cellular band (0.7 GHz to 1 GHz), and over 5dBi in the higher cellular band (1.7-2.1GHz and 2.3GHz-2.5GHz). The Wi-Fi antenna produced realized gain of over 5dBi in both 2.4 GHz and 5.8 GHz bands. The far-field pattern correlation coefficient was also calculated to evaluate the diversity gain performance of antenna system. For the cellular band, the correlation number is lower than 0.55 for 0.7 to 1 GHz, and lower than 0.35 for all the other band. For the entire Wi-Fi band, the correlation number is lower than 0.4.

An Experimental and Computational Investigation of High-Accuracy Calibration Techniques for Gain Reference Antennas
Olav Breinbjerg, Kyriakos Kaslis, Jeppe Nielsen, October 2017

Gain is a principal property of antennas; it is essential in establishing the link budget for communication and sensing systems through its presence in Friis’ transmission formula and the radar range equation. The experimental determination of antenna gain is most often based on a gain-transfer technique involving a reference antenna for which the gain has been calibrated to high accuracy; this is typically a pyramidal horn antenna [1]. The required accuracy of antenna gain obviously depend on the application; in some cases it can very high, ±0.1 dB or less, and this implies an even higher accuracy, of the order of ±0.01dB, for the gain reference antenna. This work investigates the accuracy to which a gain reference antenna can be calibrated; the investigation is based on experimental spherical near-field antenna measurements [2] and computational integral equation / method of moments simulations [3]. While calibration of gain reference antennas has been studied in many previous works, even works from early 1950s [4]-[6], this work is novel in systematically supporting measurements with full-wave simulations. Such simulations facilitate the study of e.g. the effect of multiple reflections between antennas at short distances. We study two absolute calibration techniques for the gain of pyramidal horn antennas. The first technique determines gain as the product of directivity and radiation efficiency; this technique has been referred to as the pattern integration technique [7] (which is not an entirely adequate designation since gain cannot be determined from the radiation pattern). The second technique determines the gain from Friis’ transmission formula [8] for two identical antennas; this technique is generally referred to as the two-antenna technique [1]. These two calibration techniques involve very different steps and contain very different sources of error; for both techniques our investigation involves measurements as well as simulations. For the pattern integration technique we compare experimental and computational results for the directivity and demonstrate agreement within one-hundredth of a dB. The radiation efficiency is calculated by different techniques based on the surface impedance boundary condition for the metallic walls of the pyramidal horn. This technique is not influenced by proximity effects or by impedance mismatch between the measurement system and the gain reference antenna. For the two-antenna techniques we compare experimental and computational results for the gain and we compare the calculated distance-dependence with that of the extrapolation technique [9]. It is demonstrated how the use of the phase center distance in Friis’ transmission formula notably decreases the necessary separation between the antennas for a required accuracy, but that multiple reflections may then become a limiting factor. This technique is highly influenced by the impedance mismatch that must be accurately accounted for. We compare the gain values resulting from the pattern integration technique and the two-antenna technique, including their very different uncertainty estimates, for a C-band standard gain horn. The work is related to an on-going ESA project at the DTU-ESA Spherical Near-Field Antenna Test Facility for the on-ground calibration of the scatterometer antennas of the EUMETSAT MetOp Second Generation B-series satellites. IEEE Standard – Test Procedures for Antennas, Std 149-1979, IEEE & John Wiley & Sons, 1979. J.E. Hansen, “Spherical Near-Field Antenna Measurements”, Peter Perigrinus Ltd., London 1987. www.wipl-d.com W.C. Jakes, “Gain of Electromagnetic Horns”, Proceedings of the IRE, pp. 160-162, February 1951. E.H. Braun, “Gain of Electromagnetic Horns”, Proceedings of the IRE, pp. 109-115, January 1953. W.T. Slayton, “Design and Calibration of Microwave Antenna Gain Standards”, Naval Research Laboratory, Washington D.C., November 1954. A. Ludwig, J. Hardy, and R. Norman, “Gain Calibration of a Horn Antenna Using Pattern Integration”, Technical Report 32-1572, Jet Propulsion Laboratory, California Institute of Technology, October 1972. H.T. Friis, “A Note on a Simple Transmission Formula”, Proceedings of the I.R.E. and Waves and Electrons, pp. 254-256, May 1946. A.C. Newell, R.C. Baird, P.F. Wacker, “Accurate Measurement of Antenna Gain and Polarization at Reduced Distances by an Extrapolation Technique”, IEEE Transactions on Antenna and Propagation, vol. 21, no. 4, pp. 418-431, July 1973.

High Performance Dual Polarized Near-Field Probe at V-Band Provides Increased Performances for Millimeter Wave Spherical Near-Field Measurements
Andrea Giacomini, Lars Foged, Edward Szpindor, Wenji Zhang, Per Iversen, October 2017

The expanding market for millimeter wave antennas is drivinga need for high performance near-field antenna measurement systems at these frequencies. Traditionally at millimeter waves, acquisition of two orthogonal polarizations have been achieved through mechanical rotation of a single polarized probe and an associated frequency conversion module. This generally results in the collection of two complete spherical data sets, one for each polarization,with both acquisitions significantly separated in time. To enable improvements in both measurement speed and accuracy, MVG have developed a new high performance dual polarized feed in V-band (50GHz-75GHz). This probe has been integrated in a millimeter wave Spherical Near-Field (SNF) system via two parallel receiver channels that are simultaneously sampled. This architecture more than doubles the acquisition speed and additionally ensures that the two polarization components are sampled at precisely the same point in space and time. This is particularly important when performing accurate polarization analysis (e.g. conversion of dual linear polarization to spherical/elliptical polarizations). The two measurement channels are calibrated via radiated boresight measurements over a range of polarization angles, generating a four term “ortho-mode” correction matrix vs. frequency. The SNF probe is based on an axially corrugated aperture providing a medium gain pattern (14dBi). The probe provides symmetric cuts and low cross-polarization levels in the diagonal planes. The directivity/beam-width of the aperture has been tailored to the measurement system, ensuring proper AUT illumination and sufficient gain to compensate for free space path loss. Dual polarization capability is achieved with an integrated turnstile OMT feeding directly into the probe circular waveguide and a conical matching stub at the bottom. Thanks to the balanced feed used for each polarization, the port-to-port coupling is sufficiently low to allow for simultaneous acquisition of the two linear field components. Input ports are based on standard WR-15 waveguide to simplify the integration with the front-end (dual channel receiver). The paper will present the detailed description and measured performances of the new dual polarized SNF probe. Additionally, measurement time and achieved accuracy will be compared between the single polarization probe architecture and the dual polarized probe installed in the same spherical near-field antenna measurement system.

Effects due to Antenna Mount in Base Station Antenna Measurements
John McKenna, Vivek Sanandiya, Larry Cohen, October 2017

Cellular Base Stations require efficient performance validation methods. One performance criterion is the Station radiation pattern. In directive pattern measurements, it is well documented that the Compact Antenna Test Range (CATR) and the Spherical Near Field (SNF) methods produce equivalent patterns. However, Base Station radiation patterns are not necessarily directive to the extent necessary for equivalent patterns among CATR and SNF methods. In deploying a number of Spherical Near Field and point source Compact Antenna Test Range (CATR) test facilities, we have observed the radiation pattern of base station antennas are more sensitive to the mount in a CATR than in a Spherical Near Field Antenna Test Range. This fact conflicts with intuition and theory. A barbeque spit positioner has been deployed in both spherical near field and point source compact ranges. Recently the point source compact range has been observed to yield patterns noticeable different depending on the antenna mount to the spit. On the other hand, the Spherical Near field implementation, in at least two deployments to Germany, has NOT manifested such a dependence on the mount, or, perhaps, such a dependency exists and yet has not been recognized. Measured Data will be presented showing radiation dependencies upon the mount in a CATR and SNF implementation. Explanations as to the Root Cause will be stated.

The effect of the receiving-antenna pattern on the results of the free-space VSWR technique
Amin Enayati, Zhong Chen, November 2016

The free-space VSWR technique as the standard method to extract the quiet-zone reflectivity in anechoic chambers has been explained in short. Among different uncertainty factors, the effect of pattern of the probe/receiving antenna has been investigated and some points how to reduce this effect has been suggested.

Determination of the Far Field Radiation Pattern of an Antenna from a Set of Sparse Near Field Measurements
Scott Kordella, Kenneth Grimm, November 2016

This work introduces a new technique in electromagnetic antenna near-field to far-field transformation (NF/FF). The NF/FF transformation is based on the solution of an inverse problem in which the measured NF and predicted FF values are attributed to a set of equivalent electric and magnetic surface currents which lie on a convex arbitrary surface that is conformal to the antenna under test (AUT). The NF points are conformal to the AUT, reducing the number of samples and relaxing positioning requirements used in conventional spherical, cylindrical and planar NF/FF geometries. A pseudo inversion of the matrix representing the mapping of the equivalent sources into the near-field samples is obtained by using the singular value decomposition (SVD). The SVD is used to form an approximation of the inverse of the matrix. This inverse, when multiplied by the NF measurement vector, solves for the efficiently radiating components of the current, and not the essentially non-radiating components of current which are not visible in the measurements. The inversion technique used is robust in the presence of measurement noise and provides a stable solution for the unknown currents. The FF is computed from the currents in a straightforward manner. The work develops the theoretical foundation for the approach and investigates the FF reconstruction accuracy of the technique for a test case. Approved for Public Release; Distribution Unlimited. Case Number 16-0884 The author's affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to convey or imply MITRE's concurrence with, or support for, the positions, opinions or viewpoints expressed by the author.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30