AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Instrumentation

Characterization of a dual circularly polarized, dual plane monopulse, millimeter wave antenna
J.B., Jr. Johnson,W.S. Albritton, November 1994

The characteristics of dual circularly polarized, dual plane monopulse, millimeter wave antennas are being measured at the U.S. Army Redstone Technical Test Center. This paper will describe the instrumentation suite which allows for simultaneous collection of sum and differenee data in both planes. Also discussed is special antenna under test interfacing requirements, and compact antenna test range facilities

Combined pulsed/CW and pulsed-IF instrumentation radar system, A
D. Fleisch,B. Kent, H. Chizever, P. Swetnam, November 1994

In response to evolving USAF RCS measurement requirements, Lintex has developed a combined Pulsed/CW and Pulsed-IF instrumentation system for use at the Advanced Radar Cross Section Measurement Range. This instrumentation system, one of Lintek's Model 500 Series, couples the simplicity and high signal-to-noise ration of Pulsed/CW measurements with the flexibility and precise clutter rejection of Pulsed-IF systems. In this paper, a direct comparison of the Pulsed/CR and Pulsed-IF performance is presented. The theoretical sensitivity and throughput of the system as a function of duty cycle in each mode is calculated and compared to the measured results. The Pulsed-IF system is found to have better sensitivity and stability for short-range measurements due to the high PRF capability of this receiver. The Pulsed-IF mode of operation also offers much better sensitivity for measurements made at longer ranges, for which the duty-cycle losses of the Pulsed/CW mode become excessive. The wideband Pulsed-IF mode is also preferred in high-background environments, since precise time-gating may be used to reduce the clutter return. In areas of high RFI, the Pulsed/CW radar system has provided better results due to the narrow receiver bandwidth.

Compact modular instrumentation radar system, A
J. Paul,E. Lee, Y. Chu, Y.M. Woo, November 1994

A compact modular instrumentation radar system has been developed for antenna, RCS, and general RF measurements. The MMS-420 system consists of a single, rack mounted, programmable mainframe controller and display into which a wide range of RF, IF and signal processing modules can be installed. A family of external RF modules has also been developed to support measurements from VHF through millimeter-wave bands. It is designed to function as a stand-alone measurement system, or interface with network analyzers and other external processing equipment. The hardware and software are easy to customize for specialized measurement applications.

High-speed measurement of T/R modules used in phased array antennas
J.M. Moorehead, November 1994

As mobile and satellite phased array antennas move from to concept production the demands on test station throughput increases dramatically. Completely characterizing a Transmit/Receive (TIR) module may require thousands of S-parameter measurements under CW and high-power pulsed conditions, as well as, harmonics, spurious, and noise figure measurements. The measurement throughput of instrumentation used in characterizing the prototype TIR modules simply may not be capable of handling the added volume of a production environment. The volume of measurements, the multiport nature of the device, and the integrated TIR module control make it necessary to reexamine the traditional approaches of separate network analyzers, noise figure meters, and spectrum analyzers. The result is a high-speed modular test ystem that completely characterizes the device in a single connection. The system contains a single receiver and a dedicated controller that utilizes the instrumentation in the most efficient method while maintaining or increasing the accuracy of traditional approaches. This paper describes the high-speed test stations that have been designed and built and are currently in use in several production facilities. Test system architecture is discussed and measurement throughput numbers are given and compared to conventional approaches.

Vertical antenna array applications on a ground-bounce instrumentation radar range
B.E. Fischer, November 1994

A vertical array of antennas is used to beamform the farfield used in the measurement of Radar Cross Section (RCS) on a ground-bounce radar range. By properly weighting (attenuating) and phasing (through line length adjustments) each antenna, a desired far-field pattern can be obtained. This paper discusses some benefits of the technique and outlines a basic mathematical approach. Implementation is considered, and wide band ramifications of a practical design are discussed. At RATSCAT, this basic understanding was used to examine a simple two element array. This paper preceded that study and was originally written just for that purpose.

Pulsed antenna measurements with the HP 8530A microwave receiver
J. Swanstrom,R. Shoulders, November 1994

This paper discusses the instrumentation techniques that can be used for the measurement and characterization of antennas that are to be tested in a pulsed-RF mode of operation. A pulse-parameter chart is presented that illustrates all possible ranges of pulse width and pulse repetition frequencies for antennas operating in a pulsed mode. An antenna operating in a pulse mode will have pulse parameters that lie somewhere on the pulse­ parameter chart. This paper defines five different measurement regions of the pulse-parameter chart, and presents the measurement techniques for measuring pulsed antennas that operate in each of these regions.

Instrumentation upgrade for ultra-high speed data acquisition in the DASA compensated compact range
H.F. Schluper,H-J. Steiner, J.F. Aubin, T. Jakob, November 1994

Deutsche Aerospace is developing and testing high­ performance communications antennas for the INTELSAT program. A large number of antenna measurements must be performed, for two polarizations, multiple frequencies and multiple beams. To measure all parameters in a single rotation of the antenna, a high­speed instrumentation system is required. The instrumentation was upgraded using the latest technology in receivers, sources and control systems. Commercially available components were used for all components. The resulting system can perform a complex antenna measurement consisting of over four million data points within only two hours.

Remote thickness sensor
W.S. Arceneaux, November 1993

Applications that require tight tolerances on dielectric thickness control need accurate sensors. A technique has been developed that will allow for the measurement of thickness without requiring surface contact. High resolution radar imaging, commonly used in RCS measurements , is now being used to measure thickness. Electromagnetic fields reflected from the front and rear surface are detected and the time response delta is converted into thickness. A major advantage of this method is that it is not affected by varying sensor offset height.

Portable RCS diagnostic system
R. Harris,B. Freburger, D. Maffei, R. Redman, November 1993

This paper describes the most recent version of the Model 200 portable RCS diagnostic radar. The Model 200 was designed to provide high-resolution RCS measurements in unprepared rooms indoors as well as on outdoor ranges. The system can provide real aperture measurements, ISAR measurements, or SAR measurements without changing system configuration.

Analytic spherical near field to near/far field transformation, An
T.K. Sarkar,A. Taaghol, P. Petre, R.F. Harrington, November 1993

An efficient and accurate spherical near field to far field transformation without probe correction is presented. The indices m of the Legendre polynomials is summed up analytically, thereby reducing the computation time. Computations with both synthetic and experimental data illustrate the accuracy of this technique.

Algorithm for editing RFI from antenna measurements
R.B. Dybdal,G.M. Shaw, November 1993

Techniques for editing RFI from antenna measurements are developed for vector network analyzer instrumentation, and include the processing within the analyzer. An algorithm was devised for identifying data that may contain RFI; this algorithm is based on the electrical size of the antenna. Once data containing RFI are identified, extrapolation techniques based on the electrical size of the antenna are used to produce continuous data.

Dual-frequency,dual-polarized millimeter wave antenna characterization
J.P. Kenney,D. Mooradd, E. Martin, L.D. Poles, November 1993

The radiation characteristics for a dual-frequency, dual-polarized millimeter wave antenna for a radar operating at 33 and 95-GHz were measured at the Ipswich Research Facility. On-pole and cross-pole radiation patterns were measured using the 2600 foot far field range. In this paper we'll discuss the general design of the antenna feed system and the instrumentation ensemble used to perform the far field characterization of this high performance large aperture dielectric lens antenna.

Ground-to-air RCS diagnostic system
R. Harris,A. Strasel, B. Freburger, C. Zappala, M. Lewis, R. Redman, November 1993

The initial phase of METRATEK's new Model 300 Radar System has been installed at the Navy's Chesapeake Tests Range (CTR) at Patuxent River, MD. This ground-to-air Multimode, Multifrequency Instrumentation Radar System (MMIRS) is a high-throughput frequency-and-polarization agile radar that is designed to drastically reduce the cost of measuring the radar cross section of airborne targets by allowing simultaneous measurements to be made at VHF through Ku Band.

High duty instrumentation radar transmitters
F.A. Miller, November 1993

Today's requirements for dynamic Radar Cross Section (RCS) test data set new demands upon instrumentation Radar systems. Transmitters must deliver high power and operate at high data rates. Additionally, noise floor reduction of coherent spurious signals improves raw data and minimizes the need for manipulation of data.

High-speed, pulsed antenna measurements using the Scientific-Atlanta Model 1795P
O.M. Caldwell, November 1993

Characterizing antennas under pulsed RF conditions has focused attention on a class of measurement challenges not normally encountered in CW measurements. The primary problems often include high transmit power, thermal management of the AUT, and a close interaction between the antenna and its transmitting circuitry. This paper presents instrumentation techniques for pulsed RF antenna measurements using the Scientific-Atlanta 1795P Pulsed Microwave Receiver as an example of a commercially available solution applicable to both active and passive apertures. Emphasis is given to measurement speed, dynamic range, linearity, single pulse versus multiple pulse measurements, pulse width, pulse repetition frequency (PRF), frequency coverage, system integration and automation, and suitability of equipment for antenna range applications.

V-band and W-band upgrade for a compact RCS range
S. Yadre, November 1993

This paper will describe the requirement, design, implementation, and performance evaluation of MMWRCS measurement subsystems to be integrated with an existing RCS measurement system in the Sikorsky Compact Range in Bridgeport, CT. The subsystems will operate at V-band (58-62 GHz) and W-band (92-98 GHz). The requirements to test at V-band and W-band is driven by limitations of quiet zone physical volume. The Harris model 1606 reflector system produces a 6 foot diameter zone of virtual uniform amplitude and phase. Therefore scale models are fabricated for test. This translates to approximately 1/6 scale of contemporary Sikorsky Helicopter designs. Testing at 60 and 95 GHz will provide accurate simulated full scale RCS data at X and Ku-bands.

Planar near-field alignment
D. Kremer,A. Newell, A. Repjar, A. Trabelsi, C. Rose, M. Pinkasy, November 1993

This paper will discuss one method of characterizing the scan plane for planar near-field measurements. The method uses a theodolite auto-collimator, a laser interferometer, an electronic level and an optical square. The data obtained using these techniques are first used to make alignment corrections to the scan plane; then new data are used to determine the best fit for the realigned scan plane. The normal to this place is referenced using a permanently placed mirror. In addition, the final data obtained can be used in probe position-correction techniques, developed for planar near-field measurements.

Scattering by a simplified ship deckhouse model
B. Badipour,M.,J. Coulombe, T. Ferdinand, W. Wasylkiwskyj, November 1993

To gain greater insight into the design of surface ships with reduced radar cross-section characteristics, a structure resembling a ship deckhouse was physically modeled and measured. The structure was represented as a truncated pyramid. Four scaled pyramids were fabricated, all identical except for the radii of the four vertical (slanted) edges. The pyramids were measured at the University of Massachusetts, Lowell Research Foundation, submillimeter laser compact range. Measurements were made a scaled X-band using a laser-based system that operates at 585 GHz with the pyramids scaled at a ratio of 1:58.5. These shaper were measured at 0.75 degrees depression angles on a smooth metal ground plane at both HH and VV polarizations. The goal of this study was to determine if small changes in the radius of the curvature of the slanted edges could significantly affect the radar cross-section of the pyramid. In this paper the results of measurements of the pyramids will be presented. The data are compared with computer code predictions and the differences are discussed.

RCS measurements of circular patch antennas
A.S. Ali,B.W. Deats, November 1993

There has been a great deal of interest in microstrip antennas and arrays in the past decade or so due to their low cost, light weight, and conformability. Most research to date on microstrip antennas has been focused on developing techniques for characterizing their radiation properties. However, interest in evaluating the scattering properties of such antennas is increasing. The RCS of three configurations of circular patch antennas have been measured versus frequency and are compared to Moment Method predictions; a single open-circuited element, a single element terminated in a 50 ohm load, and a 3 x 3 array of open-circuited elements. In most cases, the measurements and predictions are in good agreement.

Characterization of aeronautical antennas for INMARSAT communication
S. Mishra,J. Moraces, J. Smithson, J.G. Dumoulin, P. Charron, November 1993

Aeronautical SATCOM systems for INMARSAT typically employ circular polarized electronically or mechanically steered multi beam antennas. Characterization of thee antennas requires extensive measurements that differ from conventional antenna pattern measurements. Some of these are: A. Multiple frequently CP gain, axial ratio, and discrimination measurements over a hemisphere for a large number of beams. B. Noise temperature and G/T measurements C. Carrier to multipath rejection D. Intermodulation characteristics E. Receiver and Transmitter system characteristics Details of instrumentation and procedure for these tests are presented with special emphasis on issues such as measurement speed, accuracy and processing of large amounts of data.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30