AMTA Paper Archive

 

Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)

 

Search AMTA Paper Archive
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Calibration
Method for Selecting Sources to Calibrate a Non-Rigid Phased Array
G. Brown,D. Wright, G. Wilson, R. Parks, November 2005
Abstract— A method is proposed that will optimally se­lect the placement of sources to aid in the calibration of a phased array of scalable panels that is mounted on a station­ary, ground-based, non-rigid frame. A cost function based on the Cramer-Rao Lower Bound is optimized through con­strained minimization. The array is constructed from ide­alized (non-deforming) subarray panels that have unknown perturbations in orientation and location. To demonstrate the proposed method, several case studies are investigated involving combinations of known calibration sources.
Proximity Effects in the Calibration of Microwave Radiometers
R. Wittmann,A. Cox, R. Direen, November 2005
Abstract— Microwave, total-power radiometers are cali­brated by observing sources of known brightness temperature. Free-space calibrations are usually performed assuming far-.eld interactions, although the actual calibration source may be well into the near-.eld region of the radiometer antenna. Here, we simulate the free-space coupling between radiometer and cali­bration target to explore the potential contribution of proximity effects to measurement uncertainty.
Obtaining High Quality RCS Measurements with a Very Large Foam Column
M.C Baggett,T. Thomas, November 2005
A large compact range facility required a foam column for RCS testing where the center of the quiet zone was six meters above the floor level. The RCS measurement after vector background subtraction, had to be accurate down to a –50 dBsm level from 1.5 GHz to 40 GHz. A foam column was constructed from a single billet of material. The foam column was evaluated as to its RCS level in both whole body and ISAR imaging modes. This paper describes the specification, construction and RCS evaluation of this column in the compact range facility. The column was evaluated at single frequencies and with RCS images from 2 GHz to 36 GHz using a gated CW radar. Data is presented that shows the effects of the column on the response of a calibration sphere and the response of the column itself. A study of the foam column imaging response used as the background for vector background subtraction is also described. Targets in the –60 dBsm range were successfully imaged with vector background subtraction of the foam column.
A Simple Probe Calibration Method of a New Compact Spherical Near-Field Measurement System for Antennas from 1 GHz to 10 GHz
M. Hirose,K. Komiyama, S. Kurokawa, November 2005
ABSTRACT We have developed a new compact spherical near-field measurement system using a photonic sensor as a probe and successfully measured the 3D antenna patterns of a double-ridged horn antenna from 1 GHz to 10 GHz. This system consists of a compact spherical scanner and a photonic sensor that is used for the probe of the spherical near-field measurements. In our system, only one probe can be used for the wide frequency range measurements and the probe compensation is not needed in the measurements. For the system, we propose a simple calibration method using a double-ridged horn antenna for our system. We calibrate the system by measuring the double-ridged horn antenna on the reasonable assumption that the antenna efficiency is 100 %. Comparing the absolute gain obtained by the proposed calibration method with the one decided by using three-antenna method at far-field range, we show that the agreement is good within 1 dB over the whole frequency range.
Angular Errors In Polarimetric Radar Cross Section Calibration Using A Rotating Dihedral
L Muth,C. William, D. Morales, T. Conn, November 2005
We examine how accurately the transmit and receive parameters of a radar cross section measurement sys­tem can be determined by use of a rotating dihedral as the polarimetric calibration device. We derive expres­sions for the errors due to misalignment in the angle of rotation. We obtain expressions for the angles a0,hv and a0,vh for which the measured cross-polarization ratios of a target vanish. Since the theoretical cross-polarization of a cylinder is 0, we can .nd the calibra­tion bias-correction angles. We use simulated and real data to demonstrate the robustness of this bias-angle correction technique. We derive expressions for the uncertainty in the polarimetric system parameters.
Effects of Array Panel Joint Discontinuities on RF Calibration
V. Tripp,D. Wright, G. Wilson, R. Hemphill, R. Parks, November 2005
In this paper is presented an experimental investigation of conventional array calibration in the presence of various kinds of joint discontinuities between array panels. Two rigid array panels were positioned such that the element lattice was continuous across a narrow joint. Three kinds of discontinuities were applied to the joint: (1) an angle, (2) a gap (including an edge), and (3) a step between panels. Each type was investigated for joints oriented in the E-plane and the H-plane. Each discontinuity was also varied in magnitude so as to observe parametric effects. Planar near-field-range (NFR) measurements were made in a conventional array calibration mode and a near-field pattern mode. Processing included separating the pattern component due to element transmission (impedance) change from that due to pattern shape change. Results show that conventional calibration methods quickly become inadequate to calibrate these discontinuities because they change element pattern shapes.
Influence of Truncation of Near-Field Data in Calibration of Phased Array Antennas
A. Boomstra, November 2005
In this paper, reduction of the near-field scanplane in calibration of phased array antennas is discussed. In general, truncation of near-field data can give a considerable reduction of acquisition time. This particularly applies in a larger extent to phased array measurements, where a high number of channels is measured in the calibration process. Also, relative small equipment can be used to measure relative large antennas, which can be cost-effective. In this paper, it is shown that under certain conditions the scanplane, and therefore acquisition time, can be reduced substantially. Based on an example, different scanplane sizes and reduction techniques are considered to investigate and estimate the influence of truncation size on the error in the calibration parameters.
Three-Antenna Method for Group Delay Calibration
P. Rousseau,F. Pisano, November 2005
Antenna systems are increasing in complexity at a rapid pace as advances are made in electronics, signal processing, communication, and navigation technologies. In the past, antenna design requirements have focused on parameters such as gain, efficiency, input impedance, and radiation pattern (e.g., beamwidth and sidelobe level). For some new systems, the group delay characteristics of the antenna are important, where the group delay is proportional to the derivative of the insertion phase as a function of frequency. The group delay is required to stay within certain bounds as a function of frequency and pattern angle. Unfortunately, there are not well established methods or standards for calibrating antenna group delay like the standard methods used for gain and input impedance. This paper presents a method for calibrating the group delay of three antennas based on an extension of the widely used three-antenna gain and polarization calibration methods. No prior knowledge of the gain or group delay of the three antennas is required. The method is demonstrated by a measurement example where it is shown that multipath errors and time gating can be critical for calibrating the group delay.
Antenna Measurements by Novel Optical Link System Using New Microwave-Optical Technologies
S. Kurokawa,K. Komiyama, M. Hirose, November 2005
We propose a novel microwave measurement system that consists of transmitting and receiving optical-fiber link systems. The system can measure parameters of S11 and S21 of an antenna under test (AUT) by the procedure of OSLT 1-pass and 2-port calibration, due to the simultaneous measurement of its relevant signals going into, reflected and transmitted from the AUT. It is shown by some experiments that the S11 and S21 of the two log-periodic antennas measured by the optical link system agree very well with those by a conventional system using metal coaxial cables. It is proved that the optical system can be used to evaluate the S11 and S21 of the AUT in broad frequency range without using coaxial cable.
S-Parameter Extraction of a Partially Filled Waveguide by Using the Finite Element Method and the Numerical TRL Calibration Technique
P. Barba,A. Bogle, L. Kempel, November 2005
Inversion of the material parameters for a sample usually requires that the sample fill the waveguide cross-section. Alternative methods require that a non-filling sample be aligned along the center-line of the waveguide. However, it is not known how errors in placement impact the accuracy of the inversion. Hence, a numerical simulation to assess these errors is beneficial to the community. The extraction of the S-parameters from a rectangular­dielectric-filled waveguide is conducted numerically by means of the Finite Element Method (FEM) and the Thru-Reflect-Line (TRL) calibration technique. Three different ratios of dielectric sample width (d) to waveguide width (a) are primarily studied. The results are then validated with experimental data on the X-band. An assessment of error with respect to position will be presented at the meeting.
The Calibration of Four-Arm Spiral Modal Measurements for Angle-of-Arrival Determination
J. Radcliffe,K. Pasala, November 2005
Direction Finding (DF) systems have long been an area of intense research within the Air Force Research Laboratory. There are presently two types of existing DF systems: wideband multi-mode antennas and interferometers. Wideband multi-mode DF systems allow for a large bandwidth but present a low resolution and high variance. Interferometers provide high accuracy and low variance but are narrow band and require a large number of single aperture antenna elements. An effort has commenced to incorporate a broadband DF system with high resolution using two multi-mode spiral antennas. Using an interferometer of multi-mode elements, we can provide high resolution and wideband operation without using numerous antennas. This paper presents the results of extensive wideband measurements carried out on a four-arm spiral antenna and the associated modeformer. These measurements are used to assess and validate the angle estimation capability of the multi-arm spiral antenna.
A Novel Method for Antenna Gain and Phase Calibration
I. Gupta,C-C. Chen, E. Newman, J. Krieger, W. Burnside, November 2005
Standard Gain Horns (SGH) are normally used as reference antennas in antenna measurements. Gain charts for SGH are provided by the supplier. These charts give the gain of the SGH in dBi versus frequency but do not provide any information on the phase variations versus frequency. For complete antenna calibration, one needs the phase as well as gain data for SGH over the frequency band of interest. To obtain the gain and phase data, one can use the three-antenna method which requires three independent measurements and, therefore, is more susceptible to measurement errors. Note that if one has access to two identical antennas, the three-antenna method reduces to a single measurement which is more desirable. In practice, however, one does not have access to two identical antennas. In this paper, a novel method which mimics measurements with two identical antennas is described. In the method, one performs S11 type measurements on the antenna of interest by placing the antenna in front of a large conductive flat plate. The late term in the S11 measurements is then used to obtain the boresight gain and phase of the antenna under test. The measured gain and phase data of several antennas obtained using the proposed method is presented and compared with the results obtained using the three-antenna method as well as with analytical results.
Conducted Emissions Testing for Electromagnetic Compatibility
M. Moy,D. Arakaki, November 2005
Operating frequencies in the gigahertz range is creating an increased need for electromagnetic compatibility (EMC) testing. In the United States, FCC regulations require conformance to radiated and conducted emissions specifications. An EMC laboratory was established at Cal Poly San Luis Obispo (screen room, test instrumentation, and software) and an experiment was developed to explore conducted emissions effects. This paper will describe the test configuration, explain the calibration procedure needed to acquire accurate measurements, and illustrate measurement techniques applied to two example systems. In addition, the data collection process is illustrated through software donated by CKC Laboratories (EMC specialists). To verify the functionality of the laboratory and to assess measurement accuracy, two 12V/15W switching power supplies are characterized for conducted emissions performance; one as supplied by the vendor (KGCOMP) and a second unit with the EMC filters removed. The noise spectrum for both units are plotted against frequency and compared to FCC specifications. The unaltered unit is shown to be in compliance, thus verifying the accuracy of the test procedure and instrumentation.
Study of Calibration Targets of Full-polarimetric RF Measurement
T. Van,B. Kent, B. Welsh, K. Hill, W. Forster, November 2004
Co-polarized and cross-polarized radar cross sections (RCS) are required to completely characterize a complex target. However, it is common for a RCS range to measure only the co-polarized RCS. This practice is primarily due to the inability to produce accurate cross-polarization analysis data for the calibration targets. The most commonly used calibration targets, spheres and cylinders, cannot be used to calibrate cross-polarized RCS due to lack of cross-polarized returns. In this paper, we consider objects that can potentially be used as calibration targets for cross-polarization measurements. Specifically, we numerically study the cross-polarized responses of the Tungsten rod, the grooved cylinder, and triangular dihedrals. Co-polarized measurement data are also included in this initial assessment. From this initial study, we find the counter-balanced dihedral to be a suitable calibration target for cross-polarized measurements.
Uncertainty Analysis and Inter-Range Comparison on RCS Measurements from Spheres
S. Wei,A. Reed, C. Ericksen, J. Rupp, November 2004
RCS data from 8 to 18 GHz on an ensemble of aluminum spheres (dia. 14", 8", 6". and 3.22x) and stainless steel ball bearings (dia. 1.25", 1.0", and 0.75"), as supported by strings in the 9-77 Range, have been collected. For inter-range comparison, the same spheres as supported separately by strings and by a foam tower have been measured in the Millimeter Wave Range (MMWR). By taking selected dual calibration pairs, the uncertainty analyses on the three sets of data show general consistency between the two Ranges, as well as between the two methods of support. In addition, the results allow us to sort out the good spheres for calibration from the bad ones.
RCS measurement Errors Associated with Calibration Spheres on Foam Columns
A. Langford,G. Szatkowski, R. Vaughan, November 2004
There is a trend within the RCS community to use squatty cylinders in place of spheres for calibration. A higher degree of accuracy can be achieved; however, cylinder calibrations require much more precision in the alignment procedures. This effort is doubled when the dual calibration target is also a cylinder. The dual calibration test article could be a sphere thus reducing calibration efforts as long as good correlation exists between theory and measurement sphere data. A series of measurements were collected at the NASA Langley Research Center Compact Range Pilot Facility to study measurement errors of spheres atop foam columns to determine their feasibility for dual calibration use.
A Sphere String Reel Calibration Technique for Improved RCS Measurements
G. Szatkowski,B. Cooper, November 2004
In recent years the need for higher quality RCS calibrations has lead to several different calibration technique investigations, such as squat cylinders, bi-cones and hybrids of both. A desirable calibration technique requires: easy implementation, a known theoretical or calculable solution and minimal interaction. The sphere as a calibration target satisfies two of the three requirements. It has no alignment issues and can be easily calculated, but the sphere-holder interaction introduces several dB of error. To reduce this interaction error, a 3D string-reel support system has been developed and demonstrated that significantly improves sphere calibration accuracy. The string-reel sphere positioning system utilizes low dielectric and highly swept strings to achieve minimal calibration error. An additional benefit of this technique allows for field probing and quick quiet zone evaluations.
Compact Multi-Probe Antenna Test Stations for Rapid Testing of Antennas and Wireless Terminals
L. Cuchesne,A. Gandois, G. Barone, N. Robic, P. Carreau, P.O. Iversen, November 2004
Rapid characterization and pre-qualification measurements are becoming more and more important for the ever-growing number of small antennas, mobile phones and other wireless terminals. There is a need driven by the wireless industries for a smart test set-up with reduced dimensions and capable of measuring radiating devices. Satimo has developed a compact, mobile and cost-effective test station called StarLab which is able to perform rapid 3D measurements of the pattern radiated by wireless devices. The StarLab equipment is derived from Satimo’s StarGate systems which are now well established spherical near field test ranges. StarLab uses a circular probe array to allow for real time full elevation cuts and volumetric 3D radiation pattern measurement within a few minutes. It is operating between 400MHz and 6GHz and can be configured for passive measurements and also cable less-active measurements. This paper describes in detail the multi-probe antenna test station and its different configurations for passive and active measurements. The accuracies for gain and power measurements are also presented as well as considerations on the total radiated power measured by the equipment. Additionally, calibration issues are discussed. Finally, measurements performed with the StarLab test station at Satimo are shown and illustrate the capabilities of the system. The measurement results are validated by comparison to the results obtained in other test ranges.
An Efficient and Highly Accurate Technique for Periodic Planar Scanner Calibration with the Antenna Unter Test in Situ
S. Pierce,M. Baggett, November 2004
This paper describes the development, testing and evaluation of a new, automated system for calibration and AUT alignment of a planar near-field scanner that allows the calibration system to remain in place during AUT measurement and which can be used to support AUT alignment to the scan plane. During scanner calibration, probe aperture position measurements are made using a tracking laser interferometer, a fixture that positions the interferometer retro reflector at a precise location relative to the probe aperture and a probe roll axis that maintains the proper orientation between the retro reflector and the interferometer as the probe position is moved. Aperture scan path information is used to construct a best-fit scan plane and to define a Cartesian, scanner-based coordinate system. Scan path data is then used to build a probe position error map for each of the three Cartesian coordinates as a function of the nominal position in the scan plane. These error maps can be used to implement software-based corrections (K-corrections) or they may be used for active Z-axis correction during measurements. By using a set of tooling points on the antenna mount, an AUT coordinate system is measured with the interferometer. The system then directs an operator through a set of AUT adjustments that align the AUT with the planar near-field scanner to a desired accuracy. This paper describes the implementation and testing of the system on an actual planar scanner and AUT test environment, showing the improvement in effective scanner planarity.
Near-Field Remote Calibration System with Minimal Sampling For Operationally Large Reflectors
W. Lippincott,M. Lundmark, R. Eisinger, T. Gutwein, November 2004
Accurate near-field calibration of a large 60 ft. diameter reflector can be accomplished with a minimal sampling technique. Near-field amplitude and phase is collected as the reflector scans across a receiving calibration tower. The near-field data is then transformed to a far-field pattern using a Fourier transform technique. Information on far-field EIRP, directivity, pointing, axial ratio and tilt, as well as encoder timing is obtained with accuracies comparable to anechoic chamber measurement techniques. The system was analyzed for sampling and multipath effects, as well as the effects of phase and amplitude stability. A spherical wave expansion technique was compared to a straight-forward summation technique for the Fourier transform.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  • Member News

    Voting is now live for AMTA's 2022 Board of Directors nominees! The three candidates are Cosme Culotta-López, Jeff Fordham, and John Locke. Please visit BoD Candidates to learn about them and watch their speeches on YouTube. Once you’ve done that, go to https://www.amta.org/vote to register your vote.

    Meet your AMTA 2021 Board of Directors

    For those who did not attend this year's symposium, just a reminder to renew your membership before the end of this year

    (Helpful HINT) Don't recall your login credentials or AMTA number? Just click the Reset Password link on any page an follow the instructions

  • AMTA News

    Congratulations to our two Student Travel Scholarship Winners:
    Mr. Florian Reher, RWTH Aachen University: Doctoral Travel Scholarship Recipient
    Ms.  Celia Fonta Romero, Universidad Politécnica de Madrid: Undergraduate Travel Scholarship recipient

    AMTA Board Proposes Bylaw Revisions - View for 90 Days (Posted 6/22/2021) - Send Comments

    AMTA Announces 2020 Best Papers - CLICK HERE

     

  • Event News

    Computational Modeling of Range Errors Videos & Handouts Now Available
    Hosted by Raytheon Technologies - CLICK HERE

    Visit AMTA 2021 Website for the Symposium on October 24-29, 2021.

    Beware Event & Hotel Phishing Schemes - CLICK HERE