Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
Maurice Paquay (ESA-ESTEC),Bruno Maffei (University of Manchester),
Denis Dubruel (Thales Alenia Space),
Dominic Doyle (ESA-ESTEC),
Gerald Crone (ESA-ESTEC),
Gilbert Forma (Thales Alenia Space),
Javier Marti-Canales (ESA-ESTEC),
Richard Hills (University of Cambridge),
Richard Wylde (Thomas Keating Ltd.),
Luis Rolo (ESA-ESTEC),
Jan Tauber (ESA-ESTEC), November 2008
In the Flight Model (FM) of the PLANCK telescope, the feed horns are connected to either HEMTs or bolometers operating at cryogenic temperatures to detect the Cosmic Microwave Background radiometric signal. For the purpose of an overall alignment verification at ambient temperature, RCS measurements have been performed using an auxiliary feed horn that is terminated with a switching diode. This verification test has been conducted at 320 GHz, to benefit from the narrow beam and a high sensitivity to misalignment.
To perform the RCS measurements, an additional “circulator” with low propagation loss and high isolation from transmit to return channel had to be developed.
Besides that, the circulator also co-locates the phase centres of both Tx and Rx range antennas on the focal point of the CATR, which allows mono-static RCS measurements. Quasi-optical techniques have been used to design a circulator that meets these requirements.
To test the feasibility of determining the feed location from the RCS measurements with an uncertainty of ±1 mm, a test campaign was conducted with the so called RF Qualification Model (RFQM). In this campaign, 9 feed locations with 1 mm separation were tested. With the Flight Model, the test was on the critical path of the planning and only one test could be conducted to verify the overall alignment.
L.J. Foged (SATIMO Italy) ,Andrea Giacomini (SATIMO Italy), H.C. Sanadiya (Indian Space Research Organisation), R.K. Malaviya (Indian Space Research Organisation), Roberto Morbidini (SATIMO Italy ), S.B. Sharma (Indian Space Research Organisation), Viren R. Sheth (Indian Space Research Organisation), November 2008
Dual polarized probes for modern high precision measurement systems have strict requirements in terms of pattern shape, polarization purity, return loss and port-to-port isolation. A desired feature of a good probe is that the useable bandwidth should exceed that of the antenna under test so that probe mounting and alignment is performed only once during a measurement campaign. As a consequence, the probe design is a trade-off between performance requirements and the usable bandwidth of the probe. For measurement applications in circular polarization the choice is between measuring the linear polarization components separately and derive the resulting circular polarized by computation or to measure directly with a circular polarized probe. Dual polarized probes in circular polarization with high polarization purity is difficult to achieve on a wide bandwidth. Dual linear polarized probe technology has recently been developed capable of achieving as much as 1:4 bandwidth while maintaining the high performance of traditional probe designs [1–7]. This paper describes the development, manufacturing and test of dual circular polarized probes with as much as 1:2 bandwidth as shown in Figure 1.
Dipoles are a typical reference antenna in measurements. Because its performance is calculable even in the near field it is commonly used as a reference. But while the ideal dipole is a calculable device, the actual reference dipole used in the lab can be far from the ideal. In this paper end fed sleeve dipoles commonly used as references in wireless measurements and traditional quarter wavelength dipoles used in a wide variety of applications including RFID testing are study. Misalignment, manufacturing tolerances, variations on dielectric, and messy solder points will be analyzed numerically and in some cases compared with measured data to see the effects of these problems on the final performance of a reference dipole unit.
G.Pinchuk (Orbit/FR-Eng),Y. Bitton (Orbit/FR-Eng),
Bernhard Priemer (Orbit/FR-Europe),
Marcel Boumans (Orbit/FR-Europe),
Seong-Soo Kim (ACE Antenna), November 2008
Orbit/FR has installed a new compact range for antenna measurements at ACE Antenna Corp. The measurement facility covers a frequency range from 0.8 to 40GHz with a Quiet Zone size of 3 m diameter x 3 m length. The design of the compact range is similar to the one already installed by Orbit/FR at Ericsson (Sweden) with some improvements in the mechanical design and in the system parameters. An intensive simulation of the reflector serrations had allowed for finding its optimal profile, thus improving the quiet zone parameters at entire frequency range, especially at low frequencies, at which a number of base-station and mobile antennas are expected for testing by ACE Antenna Corp. A new design of a feed positioner and a baffle house added more convenience for the compact range alignment and operation. The system was installed and qualified in March 2008. The field probing has been performed within the entire operating frequency range, which then allows for evaluation of the antenna measurement accuracy. A system description as well as results of simulation and excerpt of the qualification data is presented in the paper.
Stuart F. Gregson (Nearfield Systems Inc.),Greg E. Hindman (Nearfield Systems Inc.), November 2008
A near-field measurement technique for the prediction of asymptotic far-field antenna patterns from data obtained from a modified cylindrical, or plane-polar, near-field measurement system is presented. This technique utilises a simple change in facility alignment to enable near-field data to be taken over the surface of a conceptual right cone [1, 2], or right conic frustum [3, 4] thereby allowing existing facilities to characterise wide-angle antenna performance in situations where hitherto they would perhaps have been limited by truncation. This paper aims to introduce the measurement technique, describe the novel probe-corrected near-field to far-field transform algorithm which is based upon a cylindrical mode expansion of the measured fields before presenting preliminary results of both computational electromagnetic simulations and actual range measurements. As this paper recounts the progress of ongoing research, it concludes with a discussion of the remaining outstanding issues and presents an overview of the planned future work.
Daniel Janse van Rensburg (Nearfield Systems Inc.), November 2008
In this paper a technique is described that allows for the determination and correction of probe translation during polarization rotation in planar near-field measurements. The technique, which relies on the independent translation of coordinate systems for the two orthogonally polarized data sets, has significance for mm-wave testing, where bulky RF components makes probe alignment difficult. Measured data is presented to demonstrate the success of the technique.
Stuart F. Gregson (Nearfield Systems Inc.),Michael Carey (Nearfield Systems Inc.), November 2008
Most traditional antenna measurement techniques presume that the antenna under test (AUT) is accurately aligned to the mechanical axes of the test range. Sometimes, however, it is not possible to achieve such a careful antenna alignment [1]. In these cases, standard post processing techniques can be used to accurately correct antenna-to-range misalignment. Alternatively, similar results may be obtained by approximation in the form of piecewise polynomial interpolation. When carefully employed, this method will result in only a small increase in uncertainty, but with a significant reduction in computational effort. This paper describes this far-field alignment correction method, which is closely related to standard active alignment correction methods [2]. This paper then proceeds to use numerical simulation as well as actual range measurements to demonstrate the effectiveness of this method. Finally, the utility of this technique in the presentation of far-field antenna pattern functions is illustrated.
In order to ensure proper measurements in the compact range, the reflector needs to be aligned within the range. Unfortunately, the reflector does not have any direct method of leveling or locating such as straight edges or fiducials at known locations. The only known reference is the ideal point cloud. As the point cloud is given, it is oriented correctly in the range. So by centering the point cloud in the range, the compact range reflector can be aligned to the range by minimizing its deviation from the ideal point cloud. This paper will go through the mathematics used to accomplish this alignment in the translation along and rotation about the three primary axes. In addition, it will give a method of determining reflector twist. The method is sufficiently generic that it can be applied to other shapes and figures of merit.
Maurice Paquay,Dennis Dubruel, Gilbert FORMA, Javier Marti-Canales, Richard Wylde, November 2007
In the Flight Model (FM) of the PLANCK telescope, the feed horns are connected to either HEMTs or bolometers operating at cryogenic temperatures to detect the Cosmic Microwave Background radiometric signal. For the purpose of an overall alignment verification at ambient temperature, reflectivity measurements will be performed using an auxiliary feed horn that is terminated with a switching diode. This verification test will be conducted at 320 GHz, to benefit from the narrow beam and a high sensitivity to misalignment. To perform the reflectivity measurements, an additional “circulator” with low loss and high isolation between transmit and return channels had to be developed. Besides that, the circulator co-locates the phase centres of both Tx and Rx range antennas on the focal point of the CATR, which allows monostatic reflectivity measurements. Quasi-optical techniques have been used to design a circulator that meets these requirements. The assembly has been developed, tested and used for reflectivity measurements.
Comparisons of the far-field results from two different ranges are a useful complement to the detailed 18 term uncertainty analysis procedure. Such comparisons can verify that the individual estimates of uncertainty for each range are reliable or indicate whether they are either too conservative or too optimistic. Such a comparison has recently been completed using planar and spherical near-field ranges at Nearfield Systems Inc. The test antenna was a mechanically and electrically stable slotted waveguide array with relatively low side lobes and cross polarization and a gain of approximately 35 dBi. The accuracies of both ranges were improved by testing for, and where appropriate, applying small corrections to the measured data for some of the individual 18 terms. The corrections reduce, but do not eliminate the errors for the selected terms and do not change the basic near-to-far field transformations or probe correction processes. The corrections considered were for bias error leakage, multiple reflections, rotary joint variations and spherical range alignment. Room scattering for the spherical measurements was evaluated using the MARS processing developed by NSI. The final results showed a peak equivalent error signal level in the side lobe region of approximately -60 dB for both main and cross component patterns for angles of up to 80 degrees off-axis.
This paper discusses design aspects related to a tiltable lightweight near-field scanning system for use at sub-millimeter frequencies. It addresses design issues as they relate to accuracy and scanner distortions from multiple causes. Calibration methods to measure and correct for anticipated and unanticipated errors are briefly addressed. Actual test results are presented. The tiltable scanner being discussed was designed for the Atacama Large Millimeter/submillimeter Array (ALMA) [1] and is being used by the National Radio Astronomy Observatory (NRAO) [2]. It has many other applications by virtue of its light weight (approx. 120 lbs) and ability to be oriented at different angles. These include flight-line testing and other in-situ antenna test applications.
A large rolled edge compact range system featuring a 12’H x 16’W quiet zone has been designed, fabricated, installed, and tested in a large aerospace test facility. During the program, a high precision alignment methodology was utilized in conjunction with electromagnetic prediction capability to verify both mechanical and electrical performance while still under trial assembly conditions at the factory. A coherent laser radar (CLR) was utilized to measure the reflector surface on a very fine grid, and the electromagnetic (EM) quiet zone performance was calculated from the raw CLR data using a Physical Optics (PO) model. Despite extremely high surface accuracy of the panels, this evaluation methodology highlighted systematic alignment errors in the reflector system, and guided the process of correcting these errors to achieve a final factory verification assembly for the entire 20’H x 24’W reflector system of better than 0.001” over the quiet zone section of the reflector, and 0.004” rms over the entire reflector. This procedure was also utilized for the on-site installation to achieve alignment of the reflector to an AUT positioning system using the CLR, as the positioning system and chamber were already existing and operational. Thus, it was required to align the reflector to the positioning system, and not the positioning system to the reflector as is usually the case. A unique vertical carousel feed system was also aligned using this procedure. Predicted EM results were again used to finalize alignment on site prior to quiet zone field probe evaluation. This paper summarizes the overall alignment and EM evaluation process, and presents results for the installed compact range reflector system.
This paper describes the method and hardware implementation of a test bed that was designed and built to characterize the reflection characteristics of various types of reflector materials. The system described measures reflection amplitude and phase from flat test panels relative to a metal panel standard at normal incidence and for dual linear polarizations simultaneously. The measurement’s theoretical concept is based on a focused free space technique with time domain gating to remove the effect of multi-path coupling between the test panel and the feed assembly. The system as a whole demonstrates a novel method for measuring the reflection from reflector materials and characterizing their potential impact on polarization purity. The measurement system consists of: 1) A fixed reflector, 2) An alignment fixture accommodating feed assemblies, which include corrugated horns that operate over a 40% bandwidth that may be swapped out in order to cover a continuous frequency band from 18 to 75 GHz and Orthomode Transducers (OMT) in order to measure dual linear polarizations simultaneously, 3) An additional alignment fixture for mounting the flat panels under test, and 4) A Vector Network Analyzer (VNA) and computer for data collection and processing. The system is assembled on a bench top and aligned utilizing a Coordinate Measurement Machine (CMM). Sample results demonstrating the measurement of various types of reflector materials including composite reflector lay-ups with graphite face sheets and mesh samples for deployable reflectors are presented.
K. VanCaekenberghe,K. Brakora, K. Jumani, K. Sarabandi, M. Rangwala, Y-Z. Wee, November 2006
A probe station based antenna measurement setup is presented. The setup allows for measurement of complex impedance and radiation patterns of an on-wafer planar antenna, henceforth referred to as the device under test (DUT), radiating at broadside and fed by a coplanar waveguide (CPW). The setup eliminates the need for wafer dicing and custom-built test fixtures with coaxial connectors or waveguide flanges by contacting the DUT with a coplanar RF probe. In addition, the DUT is probed exactly where it will be connected to a transceiver IC later on, such that no de-embedding of the measured data is required. The primary sources of measurement errors are related to calibration, insufficient dynamic range (DR), misalignment, scattering from nearby objects and vibrations. The performance of the setup will be demonstrated through measurement of an on-wafer electrically short slot antenna (.0/35 × .0/35, 5 mm2) radiating at 2.45 GHz.
The AN/SPS-48E antenna is a three dimensional air search antenna that is currently installed on 27 US ships. Currently the 48E antenna is removed from the ship after five to seven years to be overhauled at NSWC Crane Division. The new San Antonio Class ships (LPD 17 – 25) have a new enclosed mast design, the Advanced Electromagnetic Mast/Sensor (AEM/S), in which the 48E antenna and others are installed inside the enclosed mast. The cost of removing the enclosed mast led to the decision that the 48E antenna systems (antennas and pedestals) will not be removed for overhaul and maintenance on these ships as is currently done for all other installations. As a result, new fixtures and procedures need to be developed to allow maintenance inside of the mast. The most challenging of the new fixtures is a near-field scanner, which will be used to re-tune the antenna and characterize the RF performance parameters. This paper discusses the design and development effort currently underway for this Enclosed Mast Antenna Calibration System (EMACS), most notably the mechanical design constraints placed on the scanner by the enclosed mast regarding equipment movement, installation, alignment and testing.
DSO National Laboratories (DSO) has commissioned a state-of-the-art combined near-field and far-field antenna test facility in 2004. This facility supports highly accurate measurement of a wide range of antenna types over 1–18 GHz. The overall system accuracy allows for future extensions to 40GHz and higher. The 11.0m x 5.5m x 4.0m (L x W x H) shielded facility houses the anechoic chamber and the control room. As the proffered location for this indoor facility is on top of an existing complex instead of the ground floor, antenna pickup is facilitated by a specialized loading platform accompanied by a heavy-duty state of the art fully automated 2.0m x 3.0m (W x H) sliding door, as well as an overhead crane that spans the entire chamber width. Absorber layout comprises 8-inch, 12-inch, 18-inch and 24-inch pyramidal absorbers. The positioning system is a heavy-duty high precision 3.6m x 2.9m (W x H) T-type planar scanner and AUT positioner. The AUT positioner system is configured as roll over upper slide over azimuth over lower slide system. This positioning system configuration allows for planar, cylindrical and spherical near-field measurements. A rapidly rotating roll positioner is mounted on a specialized alignment fixture behind the scanner to facilitate far-field measurements. Instrumentation is based on an Agilent PNA E8362B. Software is based on the MiDAS 4.0 package. A Real-Time Controller (RTC), accompanied by an 8-port RF switch, facilitates multi-port antenna measurements, with the possibility of interfacing to an active antenna.
Precise mechanical alignment of motion axes of both cylindrical and spherical near-field systems is critical to producing accurate data. Until recently the only way to align these types of systems was to employ traditional optical tooling (i.e. jig transits, theodolites). Alignment by these methods is difficult, time consuming, and requires specialized training. More recently, laser trackers have been used for this type of alignment. Unfortunately, these devices are expensive and demand an even higher level of operator training. This paper describes the use of low cost alignment tools and techniques that have been developed by Nearfield Systems, Inc. (NSI) that greatly simplify the alignment process. Setup and alignment can be performed in a very short period of time by technicians that have been given minimal training. Suitable optical alignment procedures when followed by the use of electrical alignment techniques [7] yield sufficient alignment accuracy to permit testing up to Ku-band.
L Muth,C. William, D. Morales, T. Conn, November 2005
We examine how accurately the transmit and receive parameters of a radar cross section measurement system can be determined by use of a rotating dihedral as the polarimetric calibration device. We derive expressions for the errors due to misalignment in the angle of rotation. We obtain expressions for the angles a0,hv and a0,vh for which the measured cross-polarization ratios of a target vanish. Since the theoretical cross-polarization of a cylinder is 0, we can .nd the calibration bias-correction angles. We use simulated and real data to demonstrate the robustness of this bias-angle correction technique. We derive expressions for the uncertainty in the polarimetric system parameters.
The Geometrical Optics characteristics of single parabolic reflector compact range systems are presented in rules of thumb for amplitude taper, phase taper and cross polarization. This is illustrated on four different range configurations (two different focal lengths and two different offset angles). Also the influence of the feed system in regard to far field diagram and alignment is discussed for typical low and medium gain corrugated feeds. No diffraction effects are discussed in this paper. With the use of the rules of thumb, a fast and yet precise qualitative and quantitative analysis, optimization and trade off can be made for a compact range optimized for the available space as well as the application.
A. Langford,G. Szatkowski, R. Vaughan, November 2004
There is a trend within the RCS community to use squatty cylinders in place of spheres for calibration. A higher degree of accuracy can be achieved; however, cylinder calibrations require much more precision in the alignment procedures. This effort is doubled when the dual calibration target is also a cylinder. The dual calibration test article could be a sphere thus reducing calibration efforts as long as good correlation exists between theory and measurement sphere data. A series of measurements were collected at the NASA Langley Research Center Compact Range Pilot Facility to study measurement errors of spheres atop foam columns to determine their feasibility for dual calibration use.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.