AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Analysis

Analysis of Ground-Bounce Illumination Errors on Ground-to-Ground Diagnostic Measurements of Aircraft
I. LaHaie,S. Rice, November 2004

We present a first-order analysis of the RCS errors resulting from non-uniform ground-bounce illumination in mobile, ground-to-ground, diagnostic RCS measurements of aircraft. For the case of a non-planar ground surface, these errors are a function of both aspect angle and position on the target. We quantify the errors in terms of their impact on the sector mean RCS as a function of position on the target. For typical targets, we show that the mean RCS error increases significantly for points displaced (either horizontally or vertically) from the calibration point. Conversely, the sector mean RCS is relatively insensitive to small-scale variations in the height of the ground, even though the errors at a single frequency and aspect angle can be quite large.

Compact Range Rolled Edge Reflector Design, Fabrication, Installation and Mechanical Qualification
J. Proctor,A. Fenn, D. Smith, G. Somers, M. Shields, P. Martin, November 2004

This paper describes the methodologies and processes used for the development, installation, alignment and qualification of a Compact Range Rolled Edge Reflector purchased by the MIT Lincoln Laboratory and installed at their test facility located at Hanscom Air Force Base. The Ohio State University, under contract to MIT Lincoln Laboratory, performed the electromagnetic design and analysis to determine the desired surface shape and required mechanical accuracy of various zones of that surface. The requirement for operation over a very broad frequency range (400 MHz to 100 GHz) resulted in a surface specification that was both physically large (24 ft × 24 ft) and included extremely tight tolerance requirements in the center section. The mechanical design process will be described, including the generation of a solid “Master Surface” created from the “cloud” of data points supplied by The Ohio State University, verification of the “Master Surface” with The Ohio State University, segmentation of the reflector body into multiple panels, design, fabrication and factory qualification of the structural stands, panel adjustment mechanisms, and panels. Results of thermal cycling of the reflector panels during the fabrication process will be presented. The processes used for installation of the reflector and the alignment of each panel to the “Master Surface” will be presented and discussed. Final verification of the surface accuracy using a tracking laser interferometer will be described. Color contour plots of the reflector surface will be provided, illustrating the final surface shape and verifying compliance to the surface accuracy requirement

Probe Array Concepts for Fast Testing of Large Radiating Structures
P. Barreau,A. Gandois, L. Foged, L. Duchesne, P. Iversen, November 2004

Satimo’s STARGATE probe array systems are now well established as an efficient tool for testing radiated performances of wireless devices and antennas. Since 1998, about forty STARGATE measurement systems have been successfully installed worldwide. Recently, a range of new applications have also demonstrated the suitability of probe arrays for large radiating structures and directive antennas. These new generation of measurement set-ups present innovative aspects regarding their rapidity, dynamic range, and accuracy. This paper will describe several novel antenna testing concepts based on probe arrays that cover automotive, aerospace, and military applications and a wide range of frequencies. The basic difference between traditional approaches using single probe and the STARGATE approach using an array of probes will be explained along with probe array calibration procedures. An error analysis budget using the conventional NIST error terms will be presented including the specific terms related to the use of probe arrays. Also a discussion will be made on some of the key technical challenges to making large probe arrays including such issues as dynamic range, mechanical tolerances, and data truncation effects.

Uncertainty Analysis for Spherical Near-Field Measurements
M.H. Francis,R.C. Wittmann, November 2003

A general approach is introduced for estimating uncertainties in far-field parameters obtained from spherical near-field measurements. Although the analysis is incomplete at present, we expect that as the measurement radius increases, our results will transform smoothly into the far-field case, where uncertainties depend on the on-axis gain and polarization of the probe and on the measurements in the far-field direction of interest.

Antenna Pattern Analysis and Correction Using Higher-Order Derivatives
P. Kolesnikoff (Ball Aerospace), November 2003

Occasionally, antenna patterns have discontinuities or “glitches” in them. While most of these glitches are obvious to a human looking at the plot, it can be difficult for a computer to automatically identify glitches while ignoring sidelobes and other real features of the antenna pattern. This paper will present a technique for accurately identifying and removing antenna pattern glitches through the use of higher order derivative information.

Update on the Air Force Research Laboratory Advance Compact Range Calibration Uncertainty Analysis
B. Welsh (Mission Research Corporation),B. Muller (Mission Research Corporation), B.M. Kent (Air Force Research Laboratory/SNS), D. Turner (Air Force Research Laboratory/SNS), W. Forster (Mission Research Corporation), November 2003

A calibration uncertainty analysis was conducted for the Air Force Research Laboratory’s (AFRL) Advanced Compact Range (ACR) in 2000. This analysis was a key component of the Radar Cross Section (RCS) ISO-25 (ANSI-Z-540) Range Certification Demonstration Project. In this analysis many of the uncertainty components were argued to be small or negligible. These arguments were accepted as being reasonable based on engineering experience. Since 2000 the ACR radar has been replaced with an Aeroflex Lintek Elan radar system. A new measurement uncertainty analysis was conducted for the ACR using the Elan radar and for a general (non-calibration) target. We present results comparing the previous results to the current analysis results.

Uncertainty Analysis of RCS Calibrations at the Etcheron Valley Range
L.A. Muth (National Institute of Standards and Technology),D. Diamond (NAWC-WD, NAVAIR), J. Adams (NAWC-WD, NAVAIR), J. Liles (NAWC-WD, NAVAIR), November 2003

We have been developing an uncertainty analysis of RCS calibrations and measurements in the 2 – 18 GHz range at the Etcheron Valley RCS outdoor ground-bounce facility. In this study we report on the results of the uncertainty analysis primarily at 11.3 GHz, but results at some other frequencies are also discussed. We plan to address all components of uncertainty, and present here in some detail the procedures used to determine the uncertainties due to nonplanar illumination, drift, noise-background and nonlinearity. We use a measurement-based approach to obtain upper-bound estimates for the component uncertainties, which are combined using root-sumsquares (RSS) to obtain the overall uncertainty. The uncertainties at any frequency can be determined using these measurement procedures.

Estimating the Uncertainties Due to Position Errors in Spherical Near-Field Measurements
A.C. Newell (Nearfield Systems Inc.), November 2003

Probe position errors, specifically the uncertainty in the theta and phi position of the probe on the measurement sphere, are one of the sources of error in the calculated far-field and hologram patterns derived from spherical near-field measurements. Until recently, we have relied on analytical results for planar position errors to provide a guideline for specifying the required accuracy of a spherical measurement system. This guideline is that the angular error should not result in translation along the arc of the minimum sphere of more than ?/100. As a result of recent simulation and analysis, expressions have been derived that relate more specifically to spherical near-field measurements. Using the dimensions of the Antenna Under Test (AUT), its directivity, the radius of the sphere (the minimum sphere) enclosing all radiating surfaces and the frequency we can estimate the errors that will result from a given position error. These results can be used to specify and design a measurement system for a desired level of accuracy and to estimate the measurement uncertainty in a measurement system.

Axial Ratio Errors When Using Linearly Polarized Probes in Planar Near-Field Measurements
P.R. Rousseau (The Aerospace Corporation),C.M. Turano (The Aerospace Corporation), M.S. Yonezaki (The Aerospace Corporation), W.C. Wysock (The Aerospace Corporation), November 2003

For a planar near-field range, it is sometimes convenient to use a linearly polarized probe to measure a circularly polarized antenna. The quality of the circular polarization of the test-antenna is determined by the measured axial ratio. This requires the amplitude and phase from two near-field scans, one scan with the probe polarization oriented horizontally and another vertically. A lateral probe position error between the horizontal and vertical orientations can occur if the probe is not aligned properly with the probe polarization rotator. This particular probe position error affects the accuracy of the axial ratio in the main beam if the beam of the test antenna is not perpendicular to the scan plane. This paper presents analysis and measurement examples that demonstrate the relationship between the errors in the axial ratio and the lateral probe position. It is shown that the axial ratio, within the main beam, is not sensitive to the lateral probe position error when the beam is normal to the scan plane. However, the error in the axial ratio in the main beam can be quite significant with a small lateral probe position error if the antenna beam is tilted at an angle with respect to the scan plane. A simple phase correction algorithm is presented that is useful for measured data from an electrically large aperture.

Compact Range Performance Effects in Interferometer Testing and Related Statistical Analysis of Field Probe Measurements
J.F. Aubin (ORBIT/FR, Inc.),M.A. Bates (ORBIT/FR, Inc.), November 2003

This paper describes and discusses relevant performance issues concerning the quiet zone illumination of a baseline interferometer antenna using a compact range system. Typical baseline interferometer antennas are utilized for precision direction finding applications, and are designed on the principle of detecting the incoming phase wave front as a means to determine the direction of arrival of the detected signal. Quiet zone illumination of the antenna using a compact range deviates from the ideal illumination by introducing some levels of amplitude and phase taper and ripple. Unwanted relative differences in the illumination of the individual elements of the interferometer antenna will introduce errors in the subsequent analysis of the direction finding accuracy and precision of the array. Sources of these errors are examined in this paper, and relevant compact range performance trade-offs are discussed to optimize the range. Considerations are given to both utility of the range, as many interferometer antennas are broadband EW type arrays, and thus require single feed, single test broadband measurements, as well as to the accuracy in characterizing the performance of the interferometer over its full operating bandwidth. In addition, this paper discusses the analysis of high precision compact range field probe data, and the subsequent application of relevant statistical parameters to characterize the data. The analysis techniques utilized highlight the important performance features required of the compact range to effectively test baseline interferometers. The implementation of an automated utility is described that applies the relevant corrections, and applies the statistical algorithms, to the data to effectively reduce the data and summarize it in a fashion that provides immediate utility to the field probe test operator.

The Surface Standard Deviation Method for TRP Measurement Uncertainty
M.D. Foegelle (ETS-Lindgren), November 2003

The Cellular Telecommunication and Internet Association has developed a ripple test measurement for qualifying the quiet zone of wireless pattern measurement systems for their Mobile Station Over the Air Test Plan. The data produced by this ripple test provides a very thorough characterization of the worst possible contributions to an antenna pattern measurement performed on the qualified system. However, the characterization represented by the maximum ripple significantly overestimates the ripple seen on typical pattern measurements produced by the qualified system, and greatly overestimates the actual uncertainty involved in the determination of integral quantities such as Total Radiated Power (TRP). In order to better account for the results of this test, a statistical analysis method referred to as the Surface Standard Deviation (SSD) has been developed to determine an expected uncertainty for surface integral quantities. This paper will present the background and formulation of the SSD method and show some typical results.

UWB Dual Linear Polarized Feed Design for Tapered Chamber
K-H Lee (ElectroScience Laboratory),C-C Chen (ElectroScience Laboratory), R. Lee (ElectroScience Laboratory), November 2003

New taper chamber feed section was created for numerical analysis. To launch the undisturbed electromagnetic wave into the test zone, newly designed dual polarized aperture-matched blade mode bowtie (ABB) antenna was designed and implemented at the vertex of the feed section of the tapered chamber. For the accurate calculation, wall type absorber samples are obtained and measured. These values are included for realistic configurations. From the simulated time domain result, field distributions at the aperture of the feed sections are investigated. Determination of the usable spaces for different frequencies is discussed. Also, cross-talk levels are presented since the feed antenna designed for dual polarization.

Numerical Analysis of Transmission Line Techniques for RF Material Measurements
J.W. Schultz (Georgia Tech Research Institute), November 2003

Microwave measurement of intrinsic material properties can be performed with transmission-line fixtures such as waveguides or free-space focused beams. However, analyses of measured data usually assume idealized sample geometries. In this paper, Finite Difference Time Domain (FDTD) calculations are used to study the systematic error from non-ideal geometries, in free-space and waveguide measurements of impedance sheets. Analytical models of these errors are developed. FDTD analysis can be used to numerically invert intrinsic material properties from measured freespace transmission coefficients. The focused beam is simulated in FDTD with a sum of weighted plane waves with a Gaussian spectral distribution. The transmission coefficient is predicted by propagating the focused beam through a material slab or sheet; and the dielectric or impedance properties are derived from the transmission coefficient. The focused beam diameter is preferably several wavelengths, which requires large sample size (>1 square meter) at low frequencies. A modified focused beam technique is described that incorporates a finite aperture in a metal groundplane to measure samples with reduced dimensions, even at low frequencies. Calculations are compared to laboratory measurements. FDTD calculations are also applied to study the effect of gaps in waveguide fixtures, since gap and edge effects in both waveguide or free-space aperture fixtures contribute to measurement error.

Stepped-Waveguide Material Characterization Technique
S.P. Dorey (Air Force Institute of Technology),M.J. Havrilla (Air Force Institute of Technology), Lydell L. Frasch (The Boeing Company), Christopher Choi (The Boeing Company), Edward J. Rothwell (Michigan State University), November 2003

Electromagnetic material characterization is the process of determining the complex permittivity and permeability of a material. Rectangular waveguide measurements involving frequencies greater than several gigahertz require only a relatively small test sample. In an X-Band (8-12 GHz) waveguide, for example, sample dimensions in the crosssectional plane are only 0.9 by 0.4 inches. However, for lower-frequency applications waveguide dimensions become progressively larger. Consequently, larger quantities of materials are required leading to possible sample fabrication difficulties. Under these circumstances, a waveguide sample holder having a reduced aperture may be utilized to reduce the time and cost spent producing large precision samples. This type of holder, however, will cause a disruption in the waveguide-wall surface currents, resulting in the excitation of higher-order modes. This paper will demonstrate how these higher-order modes can be accommodated using a modal analysis technique, thus resulting in the ability to measure smaller samples mounted in large waveguides and still determine the constitutive parameters of the materials at the desired frequencies.

Development of a MATLAB Toolbox to Investigate Near-Field Antenna Errors
A. Muthukumarasamy (Utah State University),R.J. Jost (Utah State University), November 2003

We present the results of developing a MATLABbased Near-field Antenna measurements toolbox. The purpose of this package is two-fold. First, it functions as a training tool, to help the user understand the near-field measurement process. Second, it can also function as an analysis aid, providing insight into the effect of errors on the measurement process. Results obtained from using the beta version of the toolbox are presented and the toolbox will be available as a download from the website listed in the paper, to solicit feedback from the measurement community.

Wideband Optically Multiplexed Beamformer Architecture (WOMBAt) Transmit Mode
R.D. Davis (Naval Surface Warfare Center),K. Thompson (Naval Surface Warfare Center), P. Couper (Technology Service Corporation), T. Closser (Naval Surface Warfare Center), November 2003

A Wideband Optically Multiplexed Beamformer Architecture (WOMBAt) was developed and characterized at the Crane Naval Surface Warfare Center Active Array Measurement Test Bed (AAMTB) facility. The project includes development and integration of the true-time delay (TTD) WOMBAt photonic beamformer with the Active Array Measurement Test Vehicle (AAMTV). The AAMTV is a 64-channel transmit-receive (TR) module based phased array beamformer that is integrated with the AAMTB facility 12’x9’ planar near-field scanner. The AAMTV provides phase trimming and a small amount of delay using electrical components while the WOMBAt provides longer delays using commercial-off-the-shelf (COTS) optical components typically manufactured for the telecommunication industry. By integrating the WOMBAt with the AAMTV, a highly flexible test environment was achieved that includes system calibration, multi-frequency scanning, and antenna pattern analysis. Phase I receive tests for this system were previously described and presented to AMTA[1] in 2002. This paper will describe the results of reconfiguring the AAMTV into a transmit architecture for Phase II. WOMBAt successfully demonstrated wideband TTD in both receive and transmit configurations at angles greater than the system goal of ±65º while exceeding all other system level performance goals. System level performance included a beam squint of less than 1.1º for receive and 0.5º for transmit, a worse case amplitude variation of 2.4 dB receive and 1.6 dB transmit and differential delays of less than 3.5 picoseconds.

A Design Framework for Integrated Modeling of Spacecraft Antenna
A. Guidoni (IDS Ingegneria Dei Sistemi SpA),L. Benvenuti (IDS Ingegneria Dei Sistemi SpA), L. Pandolfo (IDS Ingegneria Dei Sistemi SpA), M. Sabbadini (ESA-ESTEC), R. Guidi (IDS Ingegneria Dei Sistemi SpA), November 2003

As known, spacecraft antenna design is an everdemanding task, due to the tight requirements on performance and the small available space. Moreover, the trend of installing array antennas onboard makes this task even more complex. For this reason, every antenna design must be verified against its installation constraints, in term of pattern distortion, due to interaction with spacecraft structure, inter-antenna coupling with nearby antennas, which can be remarkable due to the reduced available space, and generation and propagation of passive inter-modulation products (PIM), that can seriously affect the performance of transponders. For the above reasons, a Design Framework has been developed in the frame of an ESA contract. In this activity, European universities, industry and research centers cooperated in order to integrate within a single environment different prediction codes providing the required modeling capabilities. The system is able to guide the user from the antenna design phases through antenna installation simulation. The framework also allows for storage and management of experimental data in the more common formats or in user-defined ones, making able the designer to validate its numerical models with measured data obtained from intermediate breadboards. A validation activity is in progress and comparisons between simulation and measurements are reported, together with main characteristics of the design system. The system has been applied, among others, in the design and compatibility analysis, of Galileo antennas.

An Effective and Practical Polarimetric Calibration Technique
D.E. Morales (EG&G Technical Services, Inc.),C.A. Johnson (EG&G Technical Services, Inc.), G.P. Guidi (EG&G Technical Services, Inc.), November 2003

The National RCS Test Facility (NRTF) has designed, fabricated, and implemented an efficient and robust calibration procedure and test body applicable to pylon based monostatic RCS measurements. Our unique calibration test body provides physical separation between the calibration device and pylon allowing the pylon to be outside the range gate of the calibration device. This separation reduces the calibration device uncertainty due to target support contamination and interaction. Spectral analysis and feature extraction of rotational dihedral/dipole data allows further rejection of background noise and clutter that possess different angular dependencies from those of the dihedral/dipole. Due to the significant reduction in the achievable crosspolarization isolation that occurs with a small degree of positioning error in dihedral/dipole roll angle, a data driven search algorithm has been developed to select the two dihedral/dipole angles used by the polarimetric distortion compensation algorithm.

Cheetah PNA RCS and Antenna Measurement System
J. Floyd (System Planning Corporation),A.C. Schultheis (System Planning Corporation), November 2003

System Planning Corporation (SPC) is pleased to announce our new instrumentation radar measurement system denoted the Cheetah radar line. This radar system is based around the new Agilent PNA series of network analyzers. The PNA operates from 0.1 to 67 GHz and is utilized for making gated CW or CW RCS and Antenna measurements. The PNA has a built in synthesizer that allows the unit to be used without costly external synthesizers and external mixers. The PNA also has four identical receiving channels, two signal and two reference, that permit simultaneous co and cross pol measurements to be made. PNA IF bandwidth is selectable from 1 Hz to 40 kHz to optimize measurement sensitivity, dynamic range and speed. Using the segmented sweep feature of the PNA a single frequency sweep can be broken into segments, to further optimize the sensitivity, dynamic range, and speed. Each segment can have its own start and stop frequency, frequency step size, IF BW and power level. SPC has developed the high speed RF gating, low noise RF preamplifiers and high speed digital timing system, which allow maximum sensitivity, full up gated CW or CW radar measurements using the PNA. SPC has coupled the system to the CompuQuest 1541 RCS and Antenna Data Acquisition and Data Analysis Processing Software. This exciting new product line offers reduced cost and improved performance over current network analyzer based systems using the HP 8530, 8510, etc. Performance improvements are in the reduced noise figure, sensitivity, dynamic range and measurement speed. Measurement speeds are increased by at least a magnitude of order over the older systems and in some cases a couple of orders of magnitude.

Analysis of Range Ambiguity Effects in a Gated Linear FM Homodyne Receiver
J. Ashton (Sensor Concepts, Inc.),D. Miller (Sensor Concepts, Inc.), T. Lim (Sensor Concepts, Inc.), November 2003

Radar systems that use pulsed waveforms for detection can be adversely affected by target returns whose round-trip time of flight is longer than the radar’s interpulse period. Unless techniques such as pulse repetition frequency (PRF) jitter or pulse phase encoding are employed, the receiver has no way of determining whether a target’s range is accurate. If this radar system is being used to collect radar cross section (RCS) data, the range ambiguities may exhibit themselves as clutter and cause unacceptable levels of data contamination. A Gated Linear FM Homodyne (gated LFMH) radar modulates its transmitted signal during the time of an individual chirp, or frequency sweep, which leads to two distinct PRFs; the chirp PRF and the interchirp pulse PRF. The chirp PRF is typically very low, on the order of tens to hundreds of chirps per second, and therefore insignificant with respect to range ambiguities. It is the interchirp pulse PRF that is typically of sufficient rate to factor significantly in the processing of data collected with range ambiguities present. This paper provides analysis of the effects of range ambiguities in a typical gated LFMH radar that occur during wideband RCS data collections. In addition, a method for optimizing the radar system parameters through the prediction of the range ambiguities will be shown.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30